Muutke küpsiste eelistusi

E-raamat: Deploying IP and MPLS QoS for Multiservice Networks: Theory and Practice

(Cisco Systems, London, UK), (Cisco Systems, Brabant, BELGIUM)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 50,62 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

QoS, short for “quality of service,? is one of the most important goals a network designer or administrator will have. Ensuring that the network runs at optimal precision with data remaining accurate, traveling fast, and to the correct user are the main objectives of QoS. The various media that fly across the network including voice, video, and data have different idiosyncrasies that try the dimensions of the network. This malleable network architecture poses an always moving potential problem for the network professional.

The authors have provided a comprehensive treatise on this subject. They have included topics such as traffic engineering, capacity planning, and admission control. This book provides real world case studies of QoS in multiservice networks. These case studies remove the mystery behind QoS by illustrating the how, what, and why of implementing QoS within networks. Readers will be able to learn from the successes and failures of these actual working designs and configurations.

*Helps readers understand concepts of IP QoS by presenting clear descriptions of QoS components, architectures, and protocols
*Directs readers in the design and deployment of IP QoS networks through fully explained examples of actual working designs
*Contains real life case studies which focus on implementation

Muu info

Filled with real world case studies; this book is a must-have for all network designers and administrators!
Preface xiii
Acknowledgments xxi
About the authors xxiii
QOS Requirements and Service Level Agreements
1(86)
Introduction
1(3)
SLA Metrics
4(20)
Network Delay
4(1)
Propagation Delay
5(1)
Switching Delay
6(1)
Scheduling Delay
6(1)
Serialization Delay
6(2)
Delay-jitter
8(1)
Packet Loss
9(3)
Bandwidth and Throughput
12(1)
Layer 2 Overheads
13(3)
VPN Hose and Pipe Models
16(2)
Per Flow Sequence Preservation
18(2)
Availability
20(1)
Network Availability
20(1)
Service Availability
21(1)
Quality of Experience
22(1)
Voice
23(1)
Video
24(1)
On-line Gaming
24(1)
Application SLA Requirements
24(52)
Voice over IP
26(3)
VoIP: Impact of Delay
29(2)
VoIP: Impact of Delay-jitter
31(2)
VoIP: Impact of Loss
33(3)
VoIP: Impact of Throughput
36(1)
VoIP: Impact of Packet Re-ordering
37(1)
Video
38(1)
Video Streaming
38(19)
Video Conferencing
57(1)
Data Applications
58(1)
Throughput Focussed TCP Applications
59(11)
Interactive Data Applications
70(4)
On-line Gaming
74(2)
Marketed SLAs versus Engineered SLAs
76(2)
End-to-End SLAs vs Segmented SLAs
77(1)
Inter-provider SLAs
77(1)
Intserv and Diffserv SLAs
78(9)
References
79(8)
Introduction to QOS Mechanics and Architectures
87(122)
What is Quality of Service?
87(7)
Quality of Service vs Class of Service or Type of Service?
88(1)
Best-effort Service
89(1)
The Timeframes that Matter for QOS
90(1)
Why IP QOS?
91(1)
The QOS Toolset
91(3)
Data Plane QOS Mechanisms
94(47)
Classification
94(1)
Implicit Classification
95(1)
Complex Classification
95(1)
Deep Packet Inspection/Stateful Inspection
96(1)
Simple Classification
96(3)
Marking
99(1)
Policing and Metering
100(2)
RFC 2697: Single Rate Three Color Marker
102(4)
RFC 2698: Two Rate Three Color Marker
106(2)
Color-aware Policers
108(3)
Metering
111(1)
Queuing, Scheduling, Shaping, and Dropping
112(1)
Queuing and Scheduling
112(16)
Dropping
128(9)
Shaping
137(3)
Link Fragmentation and Interleaving
140(1)
IP QOS Architectures
141(42)
A Short History of IP Quality of Service
141(1)
Type of Service/IP Precedence
142(2)
IP Precedence
144(1)
Type of Service
145(2)
IPv6 Traffic Class Octet
147(1)
Integrated Services Architecture
147(1)
Differentiated Services Architecture
147(3)
DS Field
150(4)
Per-Hop Behaviors
154(5)
Per-Domain Behaviors
159(1)
Explicit Congestion Notification
160(5)
Diffserv Tunneling Models
165(5)
IPv6 QOS Architectures
170(1)
MPLS QOS Architectures
171(1)
MPLS and Intserv/RSVP
172(1)
MPLS and Diffserv
173(8)
IP Multicast and QOS
181(2)
Typical Router QOS Implementations in Practice
183(6)
Layer 2 QOS
189(8)
ATM
190(3)
Mapping Diffserv to ATM QOS
193(1)
Frame-relay
194(2)
Ethernet
196(1)
Complementary Technologies
197(1)
Where QOS cannot make a difference
198(11)
References
199(5)
Appendix 2.A: Precedence, TOS, and DSCP Conversion
204(1)
Notation
204(1)
Conversion
205(4)
Deploying Diffserv
209(66)
Introduction
209(2)
Deploying Diffserv at the Network Edge
211(38)
Why is the Edge Key for Tight SLA Services?
211(1)
Edge Diffserv Case Study
212(1)
SLA Specification
212(6)
Diffserv Meta-Language
218(1)
High-speed Edge Design
218(7)
Design Variations
225(16)
Edge SLA Summary
241(1)
How Many Classes are Enough?
241(3)
What Marking Scheme to Use?
244(1)
VoIP - How Much is Enough at the Edge?
245(4)
Deploying Diffserv in the Network Backbone
249(19)
Is Diffserv Needed in the Backbone?
249(4)
Core Case Study
253(1)
Core Classes of Service and SLA Specification
253(1)
``Prioritized'' Diffserv Core Model
254(2)
Detailed Core Design
256(5)
Design Variations
261(2)
Core-marking Scheme
263(5)
Tuning (W)RED
268(7)
Tuning the Exponential Weighting Constant
269(1)
Tuning Minth and Maxth
270(1)
Mark Probability Denominator
271(1)
In- and Out-of-contract
271(1)
References
272(3)
Capacity Admission Control
275(60)
Introduction
275(15)
When is Admission Control Needed?
277(5)
A Taxonomy for Admission Control
282(3)
What Information is Needed for Admission Control?
285(1)
Parameterized or Measurements-based Algorithms
286(1)
Parameterized Algorithms
286(2)
Measurement-based Algorithms
288(2)
Topology-unaware Off-path CAC
290(2)
Topology-aware Off-path CAC: ``Bandwidth Manager''
292(11)
Example Bandwidth Manager Method of Operation: Next Generation Network Voice CAC
294(9)
The Integrated Services Architecture/RSVP
303(23)
RSVP
304(3)
RSVP Example Reservation Setup
307(7)
Application Signaling Interaction
314(2)
Intserv over Diffserv
316(4)
RSVP Aggregation
320(5)
RSVP Traffic Engineering
325(1)
NSIS
326(2)
End-system Measurement-based Admission Control
328(1)
Summary
329(6)
References
330(5)
SLA and Network Monitoring
335(40)
Introduction
335(1)
Passive Network Monitoring
336(12)
How Often to Poll?
337(1)
Per-link Statistics
337(1)
Monitoring Classification
338(1)
Monitoring Policing
339(3)
Monitoring Queuing and Dropping
342(4)
System Monitoring
346(1)
Core Traffic Matrix
347(1)
Active Network Monitoring
348(27)
Test Stream Parameters
349(1)
Packet Size
350(1)
Sampling Strategy
351(3)
Test Rate
354(1)
Test Duration and Frequency
355(2)
Protocols, Ports, and Applications
357(1)
Active Measurement Metrics
358(1)
Delay
358(2)
Delay-jitter
360(2)
Packet Loss
362(1)
Bandwidth and Throughput
363(1)
Re-ordering
363(1)
Availability
363(1)
Quality of Experience
364(1)
Deployment Considerations
364(1)
External versus Embedded Agents
364(1)
Active Monitoring Topologies
365(4)
Measuring Equal Cost Multiple Paths
369(1)
Clock Synchronization
370(1)
References
371(4)
Core Capacity Planning and Traffic Engineering
375(44)
Core Network Capacity Planning
375(14)
Capacity Planning Methodology
376(1)
Collecting the Traffic Demand Matrices
377(5)
Determine Appropriate Over-provisioning Factors
382(6)
Simulation and Analysis
388(1)
IP Traffic Engineering
389(30)
The Problem
390(4)
IGP Metric-based Traffic Engineering
394(3)
MPLS Traffic Engineering
397(1)
MPLS TE Example Tunnel Establishment
397(7)
Diffserv-aware MPLS Traffic Engineering
404(4)
MPLS TE Deployment Models and Considerations
408(4)
Setting Tunnel Bandwidth
412(2)
References
414(5)
Index 419