|
|
1 | (28) |
|
|
1 | (4) |
|
1.1.1 Finite Words and co- words |
|
|
2 | (1) |
|
|
3 | (2) |
|
|
5 | (1) |
|
|
6 | (1) |
|
1.3.1 Positional Strategies |
|
|
6 | (1) |
|
|
7 | (1) |
|
|
7 | (3) |
|
1.4.1 Parity Index of an Automaton |
|
|
10 | (1) |
|
|
10 | (4) |
|
1.5.1 Semigroups and Monoids |
|
|
11 | (1) |
|
|
11 | (2) |
|
|
13 | (1) |
|
1.5.4 Ramsey's Theorem for Semigroups |
|
|
13 | (1) |
|
|
14 | (5) |
|
1.6.1 Borel and Projective Hierarchy |
|
|
14 | (2) |
|
1.6.2 Topological Complexity |
|
|
16 | (1) |
|
|
17 | (1) |
|
1.6.4 The Boundedness Theorem |
|
|
17 | (1) |
|
1.6.5 Co-inductive Definitions |
|
|
18 | (1) |
|
|
19 | (10) |
|
1.7.1 Classes of Regular Tree Languages |
|
|
21 | (1) |
|
|
22 | (1) |
|
1.7.3 Topological Complexity of Regular Languages |
|
|
23 | (1) |
|
|
23 | (1) |
|
1.7.5 Separation Property |
|
|
24 | (2) |
|
1.7.6 Deterministic Languages |
|
|
26 | (3) |
|
Subclasses of Regular Languages |
|
|
|
|
29 | (8) |
|
|
30 | (3) |
|
2.1.1 Definability in wmso |
|
|
30 | (1) |
|
|
30 | (1) |
|
2.1.3 Bi-unambiguous Languages |
|
|
31 | (1) |
|
|
32 | (1) |
|
2.1.5 Topological Complexity vs. Decidability |
|
|
32 | (1) |
|
2.1.6 Separation Property |
|
|
33 | (1) |
|
2.2 Overview of the Parts |
|
|
33 | (4) |
|
2.2.1 Part I: Subclasses of Regular Languages |
|
|
34 | (1) |
|
2.2.2 Part II: Thin Algebras |
|
|
35 | (1) |
|
2.2.3 Part ITI: Extensions of Regular Languages |
|
|
36 | (1) |
|
3 Collapse for Unambiguous Automata |
|
|
37 | (8) |
|
|
38 | (2) |
|
3.2 Construction of the Automaton |
|
|
40 | (3) |
|
|
41 | (1) |
|
|
42 | (1) |
|
|
43 | (2) |
|
4 When a Buchi Language Is Definable in wmso |
|
|
45 | (26) |
|
4.1 The Ordinal of a Buchi Automaton |
|
|
46 | (6) |
|
|
47 | (1) |
|
|
48 | (2) |
|
|
50 | (2) |
|
|
52 | (4) |
|
4.2.1 K-reach Implies Big Rank |
|
|
53 | (1) |
|
4.2.2 Big Rank Implies A-reach |
|
|
54 | (2) |
|
4.3 Automata for K-safe Trees |
|
|
56 | (2) |
|
|
58 | (4) |
|
|
59 | (2) |
|
|
61 | (1) |
|
|
62 | (6) |
|
4.5.1 Implication (1)⇒ (2) |
|
|
62 | (4) |
|
4.5.2 Implication (2) ⇒ (1) |
|
|
66 | (2) |
|
|
68 | (3) |
|
5 Index Problems for Game Automata |
|
|
71 | (22) |
|
5.1 Runs of Game Automata |
|
|
72 | (2) |
|
5.2 Non-deterministic Index Problem |
|
|
74 | (2) |
|
|
76 | (3) |
|
|
76 | (1) |
|
|
77 | (1) |
|
|
77 | (1) |
|
|
78 | (1) |
|
|
78 | (1) |
|
5.4 Alternating Index Problem |
|
|
79 | (10) |
|
|
79 | (2) |
|
|
81 | (3) |
|
|
84 | (5) |
|
|
89 | (4) |
|
|
|
6 When a Thin Language Is Definable in wmso |
|
|
93 | (28) |
|
|
95 | (7) |
|
|
95 | (1) |
|
|
96 | (1) |
|
6.1.3 Examples of Skurczyhski |
|
|
97 | (1) |
|
|
98 | (2) |
|
|
100 | (2) |
|
|
102 | (3) |
|
6.2.1 The Automaton Algebra |
|
|
104 | (1) |
|
|
105 | (5) |
|
6.3.1 Embeddings and Quasi-skeletons |
|
|
106 | (3) |
|
6.3.2 Proof of Proposition 6.13 |
|
|
109 | (1) |
|
6.4 Characterisation of WMSO-definable Languages |
|
|
110 | (8) |
|
6.4.1 Implication (2) ⇒ (3) |
|
|
110 | (5) |
|
6.4.2 Implication (5) ⇒ (1) |
|
|
115 | (3) |
|
|
118 | (3) |
|
7 Recognition by Thin Algebras |
|
|
121 | (16) |
|
7.1 Prophetic Thin Algebras |
|
|
122 | (3) |
|
7.2 Bi-unambiguous Languages |
|
|
125 | (5) |
|
7.2.1 Prophetic Thin Algebras Recognise only Bi-unambiguous Languages |
|
|
125 | (1) |
|
7.2.2 Markings by the Automaton Algebra for an Unambiguous Automaton |
|
|
126 | (3) |
|
7.2.3 Every Bi-unambiguous Language is Recognised by a Prophetic Thin Algebra |
|
|
129 | (1) |
|
7.3 Consequences of Conjecture 2.1 |
|
|
130 | (1) |
|
7.4 Decidable Characterisation of the Bi-unambiguous Languages |
|
|
131 | (4) |
|
7.4.1 Pseudo-syntactic Morphisms |
|
|
132 | (2) |
|
7.4.2 Decidable Characterisation |
|
|
134 | (1) |
|
|
135 | (2) |
|
8 Uniformization on Thin Trees |
|
|
137 | (22) |
|
|
138 | (1) |
|
8.2 Transducer for a Uniformized Relation |
|
|
139 | (4) |
|
|
143 | (8) |
|
8.3.1 Equivalence (1) ⇔ (2) |
|
|
144 | (1) |
|
8.3.2 Implication (2) ⇒ (3) |
|
|
145 | (5) |
|
8.3.3 Implication (4) ⇒ (2) |
|
|
150 | (1) |
|
|
151 | (5) |
|
|
151 | (1) |
|
8.4.2 A Marking of a Thick Tree |
|
|
152 | (2) |
|
8.4.3 Non-uniformizability of Skeletons |
|
|
154 | (1) |
|
8.4.4 Ambiguity of Thin Trees |
|
|
155 | (1) |
|
|
156 | (3) |
|
Extensions of Regular Languages |
|
|
|
9 Descriptive Complexity of mso+u |
|
|
159 | (14) |
|
|
160 | (3) |
|
|
162 | (1) |
|
|
163 | (3) |
|
9.3 Functions ci, di, and ri |
|
|
166 | (2) |
|
|
168 | (1) |
|
|
169 | (2) |
|
9.5.1 Proof of Theorem 9.7 |
|
|
170 | (1) |
|
|
171 | (2) |
|
10 Undecidability of mso+u |
|
|
173 | (10) |
|
|
175 | (2) |
|
10.1.1 Godel's Constructible Universe |
|
|
175 | (1) |
|
|
176 | (1) |
|
|
177 | (1) |
|
10.3 Projective Determinacy |
|
|
178 | (2) |
|
10.4 Undecidability of proj-Mso on {L, R}ω |
|
|
180 | (1) |
|
10.4.1 Proof of Theorem 10.88 |
|
|
180 | (1) |
|
|
181 | (2) |
|
11 Separation for ωB- and ωS-regular Languages |
|
|
183 | (22) |
|
|
184 | (4) |
|
|
184 | (1) |
|
|
185 | (2) |
|
11.1.3 Ramsey-Type Arguments |
|
|
187 | (1) |
|
|
188 | (1) |
|
|
188 | (5) |
|
11.2.1 ωB- and ωS-automata |
|
|
189 | (1) |
|
|
190 | (1) |
|
|
191 | (2) |
|
11.3 Separation for Profinite Languages |
|
|
193 | (2) |
|
|
195 | (5) |
|
11.4.1 Implication (1) ⇒ (2) |
|
|
197 | (2) |
|
11.4.2 Implication (2) ⇒ (3) |
|
|
199 | (1) |
|
11.4.3 Implication (3) ⇒ (1) |
|
|
199 | (1) |
|
11.5 Separation for ω-languages |
|
|
200 | (2) |
|
|
202 | (3) |
|
|
205 | (2) |
References |
|
207 | |