Muutke küpsiste eelistusi

E-raamat: Descriptive Set Theory and Definable Forcing

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 90,17 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The subject of the book is the relationship between definable forcing and descriptive set theory. The forcing serves as a tool for proving independence of inequalities between cardinal invariants of the continuum. The analysis of the forcing from the descriptive point of view makes it possible to prove absoluteness theorems of the type 'certain forcings are the provably best attempts to achieve consistency results of certain syntactical form' and others. There are connections to such fields as pcf theory, effective descriptive set theory, determinacy and large cardinals, Borel equivalence relations, abstract analysis, and others.
Introduction Definable forcing adding a single real The countable
support iterations Other forcings Applications Examples of cardinal
invariants The syntax of cardinal invariants Effective descriptive set theory
Large cardinals.