Muutke küpsiste eelistusi

E-raamat: Descriptive Set Theory and Forcing: How to Prove Theorems about Borel Sets the Hard Way

(University of Wisconsin, Madison)
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Logic
  • Ilmumisaeg: 18-May-2017
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781316731598
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 137,07 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Logic
  • Ilmumisaeg: 18-May-2017
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781316731598
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the fourth publication in the Lecture Notes in Logic series, Miller develops the necessary features of the theory of descriptive sets in order to present a new proof of Louveau's separation theorem for analytic sets. While some background in mathematical logic and set theory is assumed, the material is based on a graduate course given by the author at the University of Wisconsin, Madison, and is thus accessible to students and researchers alike in these areas, as well as in mathematical analysis.

Arvustused

'Miller includes interesting historical material and references. His taste for slick, elegant proofs makes the book pleasant to read. The author makes good use of his sense of humor Most readers will enjoy the comments, footnotes, and jokes scattered throughout the book.' Studia Logica

Muu info

These notes develop the theory of descriptive sets, leading up to a new proof of Louveau's separation theorem for analytic sets.
I What are the reals, anyway?
5(63)
1 On the length of Borel hierarchies
7(1)
2 Borel Hierarchy
7(4)
3 Abstract Borel hierarchies
11(2)
4 Characteristic function of a sequence
13(3)
5 Martin's Axiom
16(2)
6 Generic Gδ
18(3)
7 α-forcing
21(5)
8 Boolean algebras
26(4)
9 Borel order of a field of sets
30(2)
10 CH and orders of separable metric spaces
32(2)
11 Martin-Solovay Theorem
34(4)
12 Boolean algebra of order ω1
38(4)
13 Luzin sets
42(4)
14 Cohen real model
46(11)
15 The random real model
57(7)
16 Covering number of an ideal
64(4)
II Analytic sets
68(20)
17 Analytic sets
68(3)
18 Constructible well-orderings
71(1)
19 Hereditarily countable sets
72(2)
20 Shoenfield Absoluteness
74(2)
21 Mansfield-Solovay Theorem
76(2)
22 Uniformity and Scales
78(4)
23 Martin's axiom and Constructibility
82(2)
24 Σ1/2 well-orderings
84(1)
25 Large Π1/2 sets
85(3)
III Classical Separation Theorems
88(10)
26 Souslin-Luzin Separation Theorem
88(2)
27 Kleene Separation Theorem
90(3)
28 Π1/1-Reduction
93(2)
29 Δ1/1-codes
95(3)
IV Gandy Forcing
98(23)
30 Π1/1 equivalence relations
98(5)
31 Borel metric spaces and lines in the plane
103(4)
32 Σ1/1 equivalence relations
107(4)
33 Louveau's Theorem
111(6)
34 Proof of Louveau's Theorem
117(4)
References 121(7)
Index 128(2)
Elephant Sandwiches 130
Arnold W. Miller works in the Department of Mathematics at the University of Wisconsin, Madison.