Muutke küpsiste eelistusi

E-raamat: Descriptive Set Theory and the Structure of Sets of Uniqueness

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 66,68 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The study of sets of uniqueness for trigonometric series has a long history, originating in the work of Riemann, Heine, and Cantor in the mid-nineteenth century. Since then it has been a fertile ground for numerous investigations involving real analysis, classical and abstract harmonic analysis, measure theory, functional analysis and number theory. In this book are developed the intriguing and surprising connections that the subject has with descriptive set theory. These have only been discovered recently and the authors present here this novel theory which leads to many new results concerning the structure of sets of uniqueness and include solutions to some of the classical problems in this area. In order to make the material accessible to logicians, set theorists and analysts, the authors have covered in some detail large parts of the classical and modern theory of sets of uniqueness as well as the relevant parts of descriptive set theory. Thus the book is essentially self-contained and will make an excellent introduction to the subject for graduate students and research workers in set theory and analysis.

Arvustused

"Of all the work that has been done in recent years on connections between descriptive set theory and analysis, the results contained in this book are the deepest and most significant." Mathematical Reviews

Muu info

This book will make an excellent introduction to the subject for graduate students and research workers in set theory and analysis.
Introduction 1(16)
About This Book 17(4)
Trigonometric Series and Sets of Uniqueness
21(30)
Trigonometric and Fourier Series
21(2)
The problem of uniqueness
23(2)
The Riemann theory and the Cantor Uniqueness Theorem
25(8)
The Rajchman multiplication theory. Examples of perfect sets of uniqueness
33(8)
Countable unions of closed sets of uniqueness
41(5)
Four classical problems
46(5)
The Algebra a of Functions with Absolutely Convergent Fourier Series, Pseudofunctions and Pseudomeasures
51(29)
The spaces PF, A and PM
51(5)
Some basic facts about A
56(6)
Supports of pseudomeasures
62(7)
Description of closed U-sets in terms of pseudofunctions
69(6)
Rajchman measures and extended uniqueness sets
75(5)
Symmetric Perfect Sets and the Salem-Zygmund Theorem
80(24)
H(n)-sets
80(4)
Pisot numbers
84(3)
Symmetric and homogeneous perfect sets
87(3)
The Salem-Zygmund Theorem
90(14)
Classification of the Complexity of U
104(35)
some descriptive set theory
104(13)
The theorem of Solovay and Kaufman
117(14)
On σ-ideals of closed sets in compact, metrizable spaces
131(8)
The Piatetski-Shapiro Hierarchy of U-Sets
139(54)
Γ1 1-ranks on Γ1 1 sets
140(10)
Ranks for subspaces of Banach spaces
150(11)
The tree-rank and the R-rank
161(13)
The Piatetski-Shapiro rank on U
174(8)
The class U' of uniqueness sets of rank 1
182(11)
Decomposing U-Sets into Simpler Sets
193(38)
Borel bases for σ-ideals of closed sets
193(18)
The class U1 and the decomposition theorem of Piatetski-Shapiro
211(9)
The Borel Basis Problem for U and relations between U, U1 and U0
220(11)
The Shrinking Method, The Theorem of Korner and Kaufman, and the Solution to the Borel Basis Problem for U
231(35)
Sets of interior uniqueness
231(8)
Approximating M-sets by HO-sets
239(4)
Helson sets of multiplicity
243(17)
The solution to the Borel Basis Problem
260(6)
Extended Uniqueness Sets
266(43)
The class U'O
266(8)
The existence of a Borel basis for UO and its associated rank
274(15)
The solution to the Category Problem, and other applications
289(11)
The class U1 revisited
300(9)
Characterizing Rajchman Measures
309(19)
A theorem of Mokobodzki in measure theory
309(13)
W-sets and Lyons' characterization of Rajchman measures
322(6)
Sets of Resolution and Synthesis
328(21)
Sets of resolution
328(13)
Sets of synthesis
341(8)
List of Problems 349(4)
References 353(6)
Symbols and Abbreviations 359(4)
Index 363