Muutke küpsiste eelistusi

E-raamat: Design, Control, and Application of Modular Multilevel Converters for HVDC Transmission Systems

  • Formaat: EPUB+DRM
  • Sari: IEEE Press
  • Ilmumisaeg: 22-Aug-2016
  • Kirjastus: Wiley-IEEE Press
  • Keel: eng
  • ISBN-13: 9781118851548
  • Formaat - EPUB+DRM
  • Hind: 118,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: EPUB+DRM
  • Sari: IEEE Press
  • Ilmumisaeg: 22-Aug-2016
  • Kirjastus: Wiley-IEEE Press
  • Keel: eng
  • ISBN-13: 9781118851548

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Modular Multilevel Converters for Wind Power and Multi-Terminal HVDC systems is a comprehensive guide to semiconductor technologies applicable for MMC design, component sizing control, modulation, and application of the MMC technology for HVDC transmission.  

Separated into three distinct parts, the first offers an overview of MMC technology, including information on converter component sizing, Control and Communication, Protection and Fault Management, and Generic Modelling and Simulation. The second covers the applications of MMC in offshore WPP, including planning, technical and economic requirements and optimization options, fault management, dynamic and transient stability. Finally, the third chapter explores the applications of MMC in HVDC transmission and Multi Terminal configurations, including Supergrids.

Key features:

  • Unique coverage of the offshore application and optimization of MMC-HVDC schemes for the export of offshore wind energy to the mainland.
  • Comprehensive explanation of MMC application in HVDC and MTDC transmission technology. 
  • Detailed description of MMC components, control and modulation, different modeling approaches, converter dynamics under steady-state and fault contingencies including application and housing of MMC in HVDC schemes for onshore and offshore.
  • Analysis of DC fault detection and protection technologies, system studies required for the integration of HVDC terminals to offshore wind power plants, and commissioning procedures for onshore and offshore HVDC terminals.
  • A set of self-explanatory simulation models for HVDC test cases is available to download from the companion website.

 

This book provides essential reading for graduate students and researchers, as well as field engineers and professionals who require an in-depth understanding of MMC technology.

Preface xiii
Acknowledgements xv
About the Companion Website xvii
Nomenclature xix
Introduction 1(6)
1 Introduction to Modular Multilevel Converters 7(53)
1.1 Introduction
7(2)
1.2 The Two-Level Voltage Source Converter
9(6)
1.2.1 Topology and Basic Function
9(3)
1.2.2 Steady-State Operation
12(3)
1.3 Benefits of Multilevel Converters
15(2)
1.4 Early Multilevel Converters
17(6)
1.4.1 Diode Clamped Converters
17(3)
1.4.2 Flying Capacitor Converters
20(3)
1.5 Cascaded Multilevel Converters
23(34)
1.5.1 Submodules and Submodule Strings
23(5)
1.5.2 Modular Multilevel Converter with Half-Bridge Submodules
28(15)
1.5.3 Other Cascaded Converter Topologies
43(14)
1.6 Summary
57(1)
References
58(2)
2 Main-Circuit Design 60(73)
2.1 Introduction
60(1)
2.2 Properties and Design Choices of Power Semiconductor Devices for High-Power Applications
61(31)
2.2.1 Historical Overview of the Development Toward Modern Power Semiconductors
61(3)
2.2.2 Basic Conduction Properties of Power Semiconductor Devices
64(1)
2.2.3 P—N Junctions for Blocking
65(2)
2.2.4 Conduction Properties and the Need for Carrier Injection
67(5)
2.2.5 Switching Properties
72(1)
2.2.6 Packaging
73(7)
2.2.7 Reliability of Power Semiconductor Devices
80(4)
2.2.8 Silicon Carbide Power Devices
84(8)
2.3 Medium-Voltage Capacitors for Submodules
92(4)
2.3.1 Design and Fabrication
93(2)
2.3.2 Self-Healing and Reliability
95(1)
2.4 Arm Inductors
96(2)
2.5 Submodule Configurations
98(14)
2.5.1 Existing Half-Bridge Submodule Realizations
99(5)
2.5.2 Clamped Single-Submodule
104(1)
2.5.3 Clamped Double-Submodule
105(1)
2.5.4 Unipolar-Voltage Full-Bridge Submodule
106(1)
2.5.5 Five-Level Cross-Connected Submodule
107(1)
2.5.6 Three-Level Cross-Connected Submodule
107(1)
2.5.7 Double Submodule
108(1)
2.5.8 Semi-Full-Bridge Submodule
109(1)
2.5.9 Soft-Switching Submodules
110(2)
2.6 Choice of Main-Circuit Parameters
112(6)
2.6.1 Main Input Data
112(2)
2.6.2 Choice of Power Semiconductor Devices
114(1)
2.6.3 Choice of the Number of Submodules
115(2)
2.6.4 Choice of Submodule Capacitance
117(1)
2.6.5 Choice of Arm Inductance
117(1)
2.7 Handling of Redundant and Faulty Submodules
118(3)
2.7.1 Method 1
118(1)
2.7.2 Method 2
119(1)
2.7.3 Comparison of Method 1 and Method 2
120(1)
2.7.4 Handling of Redundancy Using IGBT Stacks
121(1)
2.8 Auxiliary Power Supplies for Submodules
121(5)
2.8.1 Using the Submodule Capacitor as Power Source
121(2)
2.8.2 Power Supplies with High-Voltage Inputs
123(2)
2.8.3 The Tapped-Inductor Buck Converter
125(1)
2.9 Start-Up Procedures
126(1)
2.10 Summary
126(1)
References
127(6)
3 Dynamics and Control 133(81)
3.1 Introduction
133(1)
3.2 Fundamentals
134(3)
3.2.1 Arms
135(1)
3.2.2 Submodules
135(1)
3.2.3 AC Bus
136(1)
3.2.4 DC Bus
136(1)
3.2.5 Currents
136(1)
3.3 Converter Operating Principle and Averaged Dynamic Model
137(11)
3.3.1 Dynamic Relations for the Currents
137(1)
3.3.2 Selection of the Mean Sum Capacitor Voltages
137(1)
3.3.3 Averaging Principle
138(2)
3.3.4 Ideal Selection of the Insertion Indices
140(1)
3.3.5 Sum-Capacitor-Voltage Ripples
141(3)
3.3.6 Maximum Output Voltage
144(2)
3.3.7 DC-Bus Dynamics
146(2)
3.3.8 Time Delays
148(1)
3.4 Per-Phase Output-Current Control
148(13)
3.4.1 Tracking of a Sinusoidal Reference Using a PI Controller
149(1)
3.4.2 Resonant Filters and Generalized Integrators
150(2)
3.4.3 Tracking of a Sinusoidal Reference Using a PR Controller
152(1)
3.4.4 Parameter Selection for a PR Current Controller
153(4)
3.4.5 Output-Current Controller Design
157(4)
3.5 Arm-Balancing (Internal) Control
161(14)
3.5.1 Circulating-Current Control
163(1)
3.5.2 Direct Voltage Control
163(3)
3.5.3 Closed-Loop Voltage Control
166(2)
3.5.4 Open-Loop Voltage Control
168(4)
3.5.5 Hybrid Voltage Control
172(3)
3.6 Three-Phase Systems
175(9)
3.6.1 Balanced Three-Phase Systems
175(1)
3.6.2 Imbalanced Three-Phase Systems
175(1)
3.6.3 Instantaneous Active Power
176(1)
3.6.4 Wye (Y) and Delta (Δ) Connections
177(1)
3.6.5 Harmonics
177(1)
3.6.6 Space Vectors
178(4)
3.6.7 Instantaneous Power
182(2)
3.6.8 Selection of the Space-Vector Scaling Constant
184(1)
3.7 Vector Output-Current Control
184(8)
3.7.1 PR (PI) Controller
186(2)
3.7.2 Reference-Vector Saturation
188(1)
3.7.3 Transformations
188(2)
3.7.4 Zero-Sequence Injection
190(2)
3.8 Higher-Level Control
192(15)
3.8.1 Phase-Locked Loop
193(4)
3.8.2 Open-Loop Active- and Reactive-Power Control
197(1)
3.8.3 DC-Bus-Voltage Control
198(2)
3.8.4 Power-Synchronization Control
200(7)
3.9 Control Architectures
207(5)
3.9.1 Communication Network
209(2)
3.9.2 Fault-Tolerant Communication Networks
211(1)
3.10 Summary
212(1)
References
212(2)
4 Control under Unbalanced Grid Conditions 214(18)
4.1 Introduction
214(1)
4.2 Grid Requirements
214(1)
4.3 Shortcomings of Conventional Vector Control
215(4)
4.3.1 PLL with Notch Filter
216(3)
4.4 Positive/Negative-Sequence Extraction
219(4)
4.4.1 DDSRF-PNSE
219(2)
4.4.2 DSOGI-PNSE
221(2)
4.5 Injection Reference Strategy
223(3)
4.5.1 PSI with PSI-LVRT Compliance
225(1)
4.5.2 MSI-LVRT Mixed Positive- and Negative-Sequence Injection with both PSI-LVRT and NSI-LVRT Compliance
226(1)
4.6 Component-Based Vector Output-Current Control
226(2)
4.6.1 DDSRF-PNSE-Based Control
226(1)
4.6.2 DSOGI-PNSE-Based Control
227(1)
4.7 Summary
228(3)
References
231(1)
5 Modulation and Submodule Energy Balancing 232(40)
5.1 Introduction
232(1)
5.2 Fundamentals of Pulse-Width Modulation
233(3)
5.2.1 Basic Concepts
233(1)
5.2.2 Performance of Modulation Methods
234(1)
5.2.3 Reference Third-Harmonic Injection in Three-Phase Systems
235(1)
5.3 Carrier-Based Modulation Methods
236(7)
5.3.1 Two-Level Carrier-Based Modulation
236(1)
5.3.2 Analysis by Fourier Series Expansion
237(5)
5.3.3 Polyphase Systems
242(1)
5.4 Multilevel Carrier-Based Modulation
243(9)
5.4.1 Phase-Shifted Carriers
243(7)
5.4.2 Level-Shifted Carriers
250(2)
5.5 Nearest-Level Control
252(4)
5.6 Submodule Energy Balancing Methods
256(14)
5.6.1 Submodule Sorting
256(3)
5.6.2 Predictive Sorting
259(4)
5.6.3 Tolerance Band Methods
263(6)
5.6.4 Individual Submodule-Capacitor-Voltage Control
269(1)
5.7 Summary
270(1)
References
271(1)
6 Modeling and Simulation 272(11)
6.1 Introduction
272(2)
6.2 Leg-Level Averaged (LLA) Model
274(1)
6.3 Arm-Level Averaged (ALA) Model
275(3)
6.3.1 Arm-Level Averaged Model with Blocking Capability (ALA-BLK)
276(2)
6.4 Submodule-Level Averaged (SLA) Model
278(2)
6.4.1 Vectorized Simulation Models
279(1)
6.5 Submodule-Level Switched (SLS) Model
280(1)
6.5.1 Multiple Phase-Shifted Carrier (PSC) Simulation
281(1)
6.6 Summary
281(1)
References
282(1)
7 Design and Optimization of MMC-HVDC Schemes for Offshore Wind-Power Plant Application 283(22)
7.1 Introduction
283(1)
7.2 The Influence of Regulatory Frameworks on the Development Strategies for Offshore HVDC Schemes
284(2)
7.2.1 UK's Regulatory Framework for Offshore Transmission Assets
285(1)
7.2.2 Germany's Regulatory Framework for Offshore Transmission Assets
286(1)
7.3 Impact of Regulatory Frameworks on the Functional Requirements and Design of Offshore HVDC Terminals
286(1)
7.4 Components of an Offshore MMC-HVDC Converter
287(7)
7.4.1 Offshore HVDC Converter Transformer
289(1)
7.4.2 Phase Reactors and DC Pole Reactors
290(2)
7.4.3 Converter Valve Hall
292(1)
7.4.4 Control and Protection Systems
293(1)
7.4.5 AC and DC Switchyards
293(1)
7.4.6 Auxiliary Systems
293(1)
7.5 Offshore Platform Concepts
294(1)
7.5.1 Accommodation Offshore
295(1)
7.6 Onshore HVDC Converter
295(3)
7.6.1 Onshore DC Choppers/Dynamic Brakers
296(1)
7.6.2 Inrush Current Limiter Resistors
297(1)
7.7 Recommended System Studies for the Development and Integration of an Offshore HVDC Link to a WPP
298(5)
7.7.1 Conceptual and Feasibility Studies with Steady-State Load Flow
299(2)
7.7.2 Short-Circuit Analysis
301(1)
7.7.3 Dynamic System Performance Analysis
301(1)
7.7.4 Transient Stability Analysis
301(1)
7.7.5 Harmonic Analysis
302(1)
7.7.6 Ferroresonance
302(1)
7.8 Summary
303(1)
References
303(2)
8 MMC-HVDC Standards and Commissioning Procedures 305(13)
8.1 Introduction
305(1)
8.2 CIGRE and IEC Activities for the Standardization of MMC-HVDC Technology
306(3)
8.2.1 Hierarchy of Available and Applicable Codes, Standards and Best Practice Recommendations for MMC-HVDC Projects
309(1)
8.3 MMC-HVDC Commissioning and Factory and Site Acceptance Tests
309(8)
8.3.1 Pre-Commissioning
311(1)
8.3.2 Offsite Commissioning Tests or Factory Acceptance Tests
312(1)
8.3.3 Onsite Testing and Site Acceptance Tests
313(1)
8.3.4 Onsite Energizing Tests
314(3)
8.4 Summary
317(1)
References
317(1)
9 Control and Protection of MMC-HVDC under AC and DC Network Fault Contingencies 318(18)
9.1 Introduction
318(1)
9.2 Two-Level VSC-HVDC Fault Characteristics under Unbalanced AC Network Contingency
319(3)
9.2.1 Two-Level VSC-HVDC Fault Characteristics under DC Fault Contingency
321(1)
9.3 MMC-HVDC Fault Characteristics under Unbalanced AC Network Contingency
322(3)
9.3.1 Internal AC Bus Fault Conditions at the Secondary Side of the Converter Transformer
323(2)
9.4 DC Pole-to-Ground Short-Circuit Fault Characteristics of the Half-Bridge MMC-HVDC
325(2)
9.4.1 DC Pole-to-Pole Short-Circuit Fault Characteristics of the Half-Bridge MMC-HVDC
325(2)
9.5 MMC-HVDC Component Failures
327(2)
9.5.1 Submodule Semiconductor Failures
327(1)
9.5.2 Submodule Capacitor Failure
328(1)
9.5.3 Phase Reactor Failure
329(1)
9.5.4 Converter Transformer Failure
329(1)
9.6 MMC-HVDC Protection Systems
329(4)
9.6.1 AC-Side Protections
331(1)
9.6.2 DC-Side Protections
331(1)
9.6.3 DC-Bus Undervoltage, Overvoltage Protection
331(1)
9.6.4 DC-Bus Voltage Unbalance Protection
332(1)
9.6.5 DC-Bus Overcurrent Protection
332(1)
9.6.6 DC Bus Differential Protection
332(1)
9.6.7 Valve and Submodule Protection
332(1)
9.6.8 Transformer Protection
333(1)
9.6.9 Primary Converter AC Breaker Failure Protection
333(1)
9.7 Summary
333(1)
References
334(2)
10 MMC-HVDC Transmission Technology and MTDC Networks 336(37)
10.1 Introduction
336(1)
10.2 LCC-HVDC Transmission Technology
336(2)
10.3 Two-Level VSC-HVDC Transmission Technology
338(1)
10.3.1 Comparison of VSC-HVDC vs. LCC-HVDC Technology
338(1)
10.4 Modular Multilevel HVDC Transmission Technology
339(4)
10.4.1 Monopolar Asymmetric MMC-HVDC Scheme Configuration
340(1)
10.4.2 Symmetrical Monopole MMC-HVDC Scheme Configuration
340(1)
10.4.3 Bipolar HVDC Scheme Configuration
341(1)
10.4.4 Homopolar HVDC Scheme Configuration
342(1)
10.4.5 Back-to-Back HVDC Scheme Configuration
342(1)
10.5 The European HVDC Projects and MTDC Network Perspectives
343(2)
10.5.1 The North Sea Countries Offshore Grid Initiative (NSCOGI)
343(1)
10.5.2 Large Integration of Offshore Wind Farms and Creation of the Offshore DC Grid
344(1)
10.6 Multi-Terminal HVDC Configurations
345(3)
10.6.1 Series-Connected MTDC Network
346(1)
10.6.2 Parallel-Connected MTDC Network
346(1)
10.6.3 Meshed MTDC Networks
347(1)
10.7 DC Load Flow Control in MTDC Networks
348(1)
10.8 DC Grid Control Strategies
349(6)
10.8.1 Dynamic Voltage Control and Power Balancing in MTDC Networks
350(1)
10.8.2 Power and Voltage Droop Control Strategy
351(1)
10.8.3 Voltage Margin Control Method
352(1)
10.8.4 Dead-Band Droop Control
352(2)
10.8.5 Centralized and Distributed Voltage Control Strategies
354(1)
10.9 DC Fault Detection and Protection in MTDC Networks
355(2)
10.10 Fault-Detection Methods in MTDC
357(5)
10.10.1 Overcurrent and Voltage Detection Methods
357(2)
10.10.2 Distance Relay Protection
359(1)
10.10.3 Differential Line Protection
359(1)
10.10.4 Voltage Derivative Detection
359(1)
10.10.5 Traveling Wave Based Detection
360(1)
10.10.6 Frequency Domain Based Detection
361(1)
10.10.7 Wavelet Based Fault Detection
361(1)
10.11 DC Circuit Breaker Technologies
362(5)
10.11.1 DC Circuit Breaker with MOVs in Series with the DC Line
364(2)
10.11.2 DC Breakers with MOVs in Parallel with the DC Line
366(1)
10.12 Fault-Current Limiters
367(2)
10.12.1 Fault Current Limiting Reactors
367(1)
10.12.2 Solid-State Fault-Current Limiters
368(1)
10.12.3 Superconducting Fault-Current Limiters
369(1)
10.13 The Influence of Grounding Strategy on Fault Currents
369(1)
10.14 DC Supergrids of the Future
370(1)
10.15 Summary
371(1)
References
371(2)
Index 373
Kamran Sharifabadi, Power Grid & Regulatory Affairs, Statoil, Norway Kamran has twenty-five years of international experience in the field of HVDC technology projects. He started out as a research engineer in ABB and Siemen, worked as a consultant for five years, then became a manager at the Norwegian TSO. He is currently a senior technology advisor for Statoil`s HVDC projects, a guest lecturer in the topics of VSC HVDC, Wind power generation technologies at NTNU and at various different universities in central Europe. Kamran is an active member of the Cigre B4 (HVDC) working group and the leader of the steering committee for a European research project on DC grids.

Remus Teodorescu, Aalborg University, Denmark Remus is an Associate Professor at the Institute of Technology, teaching courses in power electronics and electrical energy system control. He has authored over 80 journal and conference papers and two books. He is the founder and coordinator of the Green Power Laboratory at Aalborg University, and is co-recipient of the Technical Committee Prize Paper Award at IEEE Optim 2002.

Hans Peter Nee, KTH, Sweden Hans is Professor of Power Electronics in the Department of Electrical Engineering. He has supervised and examined ten finalized doctors projects, and was awarded the Elforsk Scholarship in 1997. He has served on the board of the IEEE Sweden Section for many years and was Chairman during 2002 and 2003. He is also a member of EPE and serves in the Executive Council and in the International Steering Committee.

Lennart Harnefors, ABB, Västerås, Sweden Lennart is currently with ABB Power Systems HVDC, Ludvika, Sweden as an R&D Project Manager and Principal Engineer, and with KTH as an Adjunct Professor of power electronics. Between 2001 and 2005, he was a part-time Visiting Professor of electrical drives with Chalmers University of Technology, Sweden. He is an Associate Editor of the IEEE Transactions on Industrial Electronics, on the Editorial Board of IET Electric Power Applications, and a member of the Executive Council and the International Scientic Committee of the European Power Electronics and Drives Association.

Staffan Norrga, KTH, Sweden Between 1994 and 2011, Staffan worked as a Development Engineer at ABB in Västerås, Sweden, in various power-electronics-related areas such as railway traction systems and converters for HVDC power transmission systems. In 2000, he returned to the Department of Electric Machines and Power Electronics of the Royal Institute of Technology, where he is an associate professor. He is the inventor or co-inventor of 11 granted patents and 14 patents pending and has authored more than 35 scientific papers.