Preface |
|
xv | |
|
1 Design of Low Power Junction-Less Double-Gate MOSFET |
|
|
1 | (12) |
|
|
|
|
1 | (1) |
|
1.2 MOSFET Performance Parameters |
|
|
2 | (1) |
|
1.3 Comparison of Existing MOSFET Architectures |
|
|
3 | (1) |
|
1.4 Proposed Heavily Doped Junction-Less Double Gate MOSFET (AJ-DGMOSFET) |
|
|
3 | (5) |
|
1.5 Heavily Doped JL-DG MOSFET for Biomedical Application |
|
|
8 | (1) |
|
|
9 | (4) |
|
|
10 | (3) |
|
2 VLSI Implementation of Vedic Multiplier |
|
|
13 | (18) |
|
|
|
13 | (1) |
|
|
14 | (2) |
|
2.3 The Architecture of 8×8 Vedic Multiplier (VM) |
|
|
16 | (7) |
|
2.3.1 Compressor Architecture |
|
|
17 | (1) |
|
|
18 | (1) |
|
|
18 | (1) |
|
|
18 | (1) |
|
|
19 | (1) |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
21 | (1) |
|
|
21 | (2) |
|
2.4 Results and Discussion |
|
|
23 | (5) |
|
|
23 | (1) |
|
|
24 | (1) |
|
|
25 | (1) |
|
|
26 | (1) |
|
2.4.5 Applications of Multiplier |
|
|
27 | (1) |
|
|
28 | (3) |
|
|
28 | (3) |
|
3 Gas Leakage Detection from Drainage to Offer Safety for Sanitary Workers |
|
|
31 | (12) |
|
|
|
|
|
31 | (2) |
|
3.1.1 IOT-Based Sewer Gas Detection |
|
|
31 | (1) |
|
|
32 | (1) |
|
|
32 | (1) |
|
3.1.3 Contribution of this Chapter |
|
|
33 | (1) |
|
3.1.4 Outline of the Chapter |
|
|
33 | (1) |
|
|
33 | (1) |
|
3.2.1 Sewer Gas Leakage Detection |
|
|
33 | (1) |
|
|
34 | (1) |
|
|
34 | (5) |
|
3.3.1 Sewer Gas Detection |
|
|
34 | (1) |
|
3.3.1.1 Proposed Tristate Pattern |
|
|
35 | (1) |
|
|
36 | (1) |
|
|
37 | (2) |
|
|
39 | (1) |
|
|
40 | (3) |
|
|
40 | (3) |
|
4 Machine Learning for Smart Healthcare Energy-Efficient System |
|
|
43 | (14) |
|
|
|
|
|
43 | (2) |
|
4.1.1 IoT in the Digital Age |
|
|
43 | (1) |
|
4.1.2 Using IoT to Enhance Healthcare Services |
|
|
44 | (1) |
|
|
44 | (1) |
|
|
44 | (1) |
|
4.1.5 Application in Healthcare |
|
|
45 | (1) |
|
|
45 | (2) |
|
|
47 | (3) |
|
|
47 | (1) |
|
4.3.2 Advantages of Edge Computing over Cloud Computing |
|
|
47 | (1) |
|
4.3.3 Applications of Edge Computing in Healthcare |
|
|
48 | (1) |
|
4.3.4 Edge Computing Advantages |
|
|
49 | (1) |
|
|
50 | (1) |
|
4.4 Smart Healthcare System |
|
|
50 | (2) |
|
|
50 | (1) |
|
4.4.2 Data Acquisition and IoT End Device |
|
|
51 | (1) |
|
4.4.3 IoT End Device and Backend Server |
|
|
51 | (1) |
|
4.5 Conclusion and Future Directions |
|
|
52 | (5) |
|
|
52 | (5) |
|
5 Review of Machine Learning Techniques Used for Intrusion and Malware Detection in WSNs and IoT Devices |
|
|
57 | (10) |
|
|
|
|
|
|
57 | (1) |
|
|
58 | (1) |
|
5.3 Some Countermeasures for the Attacks |
|
|
59 | (1) |
|
5.4 Machine Learning Solutions |
|
|
59 | (1) |
|
5.5 Machine Learning Algorithms |
|
|
59 | (1) |
|
5.6 Authentication Process Based on Machine Learning |
|
|
60 | (2) |
|
5.7 Internet of Things (IoT) |
|
|
62 | (1) |
|
|
62 | (1) |
|
|
62 | (1) |
|
|
62 | (1) |
|
5.9 Information and Identity Theft |
|
|
62 | (1) |
|
|
63 | (1) |
|
|
63 | (1) |
|
|
63 | (1) |
|
|
64 | (3) |
|
|
64 | (3) |
|
6 Smart Energy-Efficient Techniques for Large-Scale Process Industries |
|
|
67 | (34) |
|
|
|
|
67 | (7) |
|
6.1.1 Parts in a Centrifugal Pump |
|
|
68 | (1) |
|
|
68 | (2) |
|
|
70 | (2) |
|
|
72 | (1) |
|
|
73 | (1) |
|
|
73 | (1) |
|
6.2 Vapour Absorption Refrigeration System |
|
|
74 | (3) |
|
6.2.1 Vapour Compression Refrigeration |
|
|
74 | (1) |
|
6.2.2 Vapour Absorption Refrigeration |
|
|
75 | (2) |
|
6.3 Heat Recovery Equipment |
|
|
77 | (1) |
|
|
77 | (1) |
|
6.3.2 Advantages of Heat Recovery |
|
|
78 | (1) |
|
|
78 | (4) |
|
|
78 | (1) |
|
|
78 | (1) |
|
|
79 | (1) |
|
6.4.4 Energy-Efficiency Techniques |
|
|
79 | (1) |
|
6.4.5 Light Control with IoT |
|
|
80 | (1) |
|
|
80 | (1) |
|
|
80 | (1) |
|
|
81 | (1) |
|
|
82 | (4) |
|
|
82 | (1) |
|
6.5.2 Types of Air Conditioners |
|
|
82 | (1) |
|
|
83 | (1) |
|
|
83 | (1) |
|
6.5.5 Energy-Efficiency Tips |
|
|
83 | (2) |
|
6.5.6 Inverter Air Conditioners |
|
|
85 | (1) |
|
6.5.7 IoT-Based Air Conditioners |
|
|
85 | (1) |
|
6.6 Fans and Other Smart Appliances |
|
|
86 | (6) |
|
|
87 | (1) |
|
|
87 | (1) |
|
6.6.3 Group Drive of Fans |
|
|
88 | (1) |
|
6.6.4 Other Smart Appliances |
|
|
88 | (4) |
|
|
92 | (6) |
|
|
92 | (1) |
|
6.7.2 Underrated Operation |
|
|
93 | (1) |
|
6.7.3 Energy-Efficient Motors |
|
|
94 | (1) |
|
6.7.3.1 Energy-Efficiency Ratings of BEE |
|
|
94 | (1) |
|
6.7.3.2 Energy-Efficiency Ratings of IEC |
|
|
94 | (2) |
|
6.7.4 Retrofit of Standard Motors with Energy-Efficient Motors |
|
|
96 | (1) |
|
6.7.5 Other Salient Points |
|
|
97 | (1) |
|
6.7.6 Use of Star-Delta Starter Motor |
|
|
97 | (1) |
|
6.8 Energy-Efficient Transformers |
|
|
98 | (3) |
|
|
98 | (1) |
|
6.8.2 Super Conducting Transformers |
|
|
99 | (1) |
|
|
99 | (2) |
|
7 Link Restoration and Relay Node Placement in Partitioned Wireless Sensor Network |
|
|
101 | (18) |
|
|
|
|
101 | (2) |
|
|
103 | (2) |
|
7.2.1 Existing Techniques |
|
|
105 | (1) |
|
7.3 Proposed K-Means Clustering Algorithm |
|
|
105 | (3) |
|
7.3.1 Homogenous and Heterogeneous Network Clustering Algorithms |
|
|
105 | (1) |
|
7.3.2 Dynamic and Static Clustering |
|
|
105 | (1) |
|
|
106 | (1) |
|
|
106 | (1) |
|
|
106 | (2) |
|
7.4 System Model and Assumption |
|
|
108 | (1) |
|
7.4.1 Simulation Parameters |
|
|
108 | (1) |
|
|
108 | (1) |
|
|
109 | (1) |
|
7.4.1.3 Number of Hops or Hop Count in the Network |
|
|
109 | (1) |
|
7.5 Results and Discussion |
|
|
109 | (5) |
|
|
114 | (5) |
|
|
115 | (4) |
|
8 Frequency Modulated PV Powered MLI Fed Induction Motor Drive for Water Pumping Applications |
|
|
119 | (12) |
|
Arunkumar S. Mohana Sundaram N |
|
|
|
|
119 | (1) |
|
8.2 PV Panel as Energy Source |
|
|
120 | (1) |
|
|
120 | (1) |
|
8.3 Multi-Level Inverter Topologies |
|
|
121 | (1) |
|
8.3.1 Types of Inverters Used for Drives |
|
|
121 | (1) |
|
8.3.2 Multi-Level Inverters |
|
|
121 | (1) |
|
8.4 Experimental Results and Discussion |
|
|
122 | (6) |
|
8.4.1 PV Powered H Bridge Inverter-Fed Drive |
|
|
123 | (3) |
|
8.4.2 PV Powered DCMLI Fed Drive |
|
|
126 | (2) |
|
8.5 Conclusion and Future Scope |
|
|
128 | (3) |
|
|
129 | (2) |
|
9 Analysis and Design of Bidirectional Circuits for Energy Storage Application |
|
|
131 | (20) |
|
|
|
|
|
131 | (2) |
|
9.2 Modes of Operation Based on Main Converters |
|
|
133 | (8) |
|
9.2.1 Single-Stage Rectification |
|
|
134 | (1) |
|
9.2.2 Single-Stage Inversion |
|
|
135 | (2) |
|
9.2.3 Double-Stage Rectification |
|
|
137 | (1) |
|
9.2.3.1 Duty Mode - Interval - I |
|
|
137 | (1) |
|
9.2.3.2 Freewheeling Mode - Interval - II |
|
|
138 | (1) |
|
9.2.4 Double-Stage Inversion |
|
|
139 | (1) |
|
9.2.4.1 Charging Mode - Interval - I |
|
|
140 | (1) |
|
9.2.4.2 Duty Mode - Interval - II |
|
|
141 | (1) |
|
9.3 Proposed Methodology for Three-Phase System |
|
|
141 | (7) |
|
9.3.1 Control Block of Overall System |
|
|
143 | (1) |
|
9.3.2 Proposed Carrier-Based PWM Strategy |
|
|
144 | (1) |
|
|
145 | (3) |
|
|
148 | (3) |
|
|
148 | (3) |
|
10 Low-Power IOT-Enabled Energy Systems |
|
|
151 | (48) |
|
|
|
|
151 | (5) |
|
|
151 | (1) |
|
|
152 | (2) |
|
|
154 | (2) |
|
|
156 | (11) |
|
10.2.1 Sensing Components |
|
|
156 | (3) |
|
|
159 | (1) |
|
10.2.3 Telecommunication Technology |
|
|
160 | (6) |
|
10.2.4 Internet of Things Information and Evaluation |
|
|
166 | (1) |
|
10.2.4.1 Distributed Evaluation |
|
|
166 | (1) |
|
10.2.4.2 Fog Computing (Edge Computing) |
|
|
167 | (1) |
|
10.3 Internet of Things within Power Region |
|
|
167 | (7) |
|
10.3.1 Internet of Things along with Vitality Production |
|
|
168 | (1) |
|
10.3.2 Smart Metropolises |
|
|
168 | (3) |
|
10.3.3 Intelligent Lattice Network |
|
|
171 | (1) |
|
10.3.4 Smart Buildings Structures |
|
|
172 | (1) |
|
10.3.5 Powerful Usage of Vitality in Production |
|
|
173 | (1) |
|
10.3.6 Insightful Transport |
|
|
174 | (1) |
|
10.4 Difficulties -- Relating Internet of Things |
|
|
174 | (8) |
|
10.4.1 Vitality Ingestion |
|
|
178 | (1) |
|
10.4.2 Synchronization via Internet of Things through Sub-Units |
|
|
178 | (2) |
|
10.4.3 Client Confidentiality |
|
|
180 | (1) |
|
|
180 | (1) |
|
10.4.5 IoT Standardization and Architectural Concept |
|
|
181 | (1) |
|
10.5 Upcoming Developments |
|
|
182 | (5) |
|
10.5.1 IoT and Block Chain |
|
|
182 | (2) |
|
10.5.2 Artificial Intelligence and IoT |
|
|
184 | (1) |
|
|
185 | (2) |
|
|
187 | (12) |
|
|
188 | (11) |
|
11 Efficient Renewable Energy Systems |
|
|
199 | (16) |
|
|
|
|
199 | (1) |
|
11.1 Renewable-Based Available Technologies |
|
|
200 | (6) |
|
|
201 | (1) |
|
11.1.1.1 Modeling of the Wind Turbine Generator (WTG) |
|
|
201 | (1) |
|
11.1.1.2 Categorization of Wind Turbine |
|
|
202 | (1) |
|
|
202 | (1) |
|
|
202 | (1) |
|
11.1.2.2 Network-Linked Photovoltaic Grid-Connected PV Set-Up |
|
|
203 | (1) |
|
|
203 | (1) |
|
11.1.4 Battery Storage System |
|
|
204 | (1) |
|
11.1.5 Solid Oxide Energy Units for Enhancing Power Life |
|
|
204 | (1) |
|
11.1.5.1 Common Utility of SOFC |
|
|
204 | (1) |
|
11.1.5.2 Integrated Solid Oxide Energy Components and Sustainable Power Life |
|
|
205 | (1) |
|
11.2 Adaptability Frameworks |
|
|
206 | (4) |
|
11.2.1 Distributed Energy Resources (DER) |
|
|
206 | (3) |
|
11.2.2 New Age Grid Connection |
|
|
209 | (1) |
|
|
210 | (5) |
|
|
211 | (4) |
|
12 Efficient Renewable Energy Systems |
|
|
215 | (14) |
|
|
|
215 | (2) |
|
12.1.1 World Energy Scenario |
|
|
215 | (2) |
|
12.2 Sources of Energy: Classification |
|
|
217 | (1) |
|
12.3 Renewable Energy Systems |
|
|
217 | (1) |
|
|
218 | (1) |
|
|
218 | (1) |
|
|
218 | (1) |
|
|
218 | (1) |
|
|
218 | (1) |
|
|
218 | (1) |
|
|
218 | (5) |
|
|
223 | (2) |
|
|
225 | (1) |
|
|
226 | (1) |
|
|
226 | (1) |
|
|
227 | (1) |
|
|
227 | (1) |
|
|
227 | (1) |
|
|
227 | (2) |
|
|
227 | (2) |
|
13 Agriculture-IoT-Based Sprinkler System for Water and Fertilizer Conservation and Management |
|
|
229 | (16) |
|
|
|
|
229 | (4) |
|
13.1.1 Novelty of the Work |
|
|
232 | (1) |
|
13.1.2 Benefit to Society |
|
|
232 | (1) |
|
13.2 Development of the Proposed System |
|
|
233 | (1) |
|
|
233 | (3) |
|
13.3.1 Study of the Crop Under Experiment |
|
|
233 | (2) |
|
13.3.2 Hardware of the System |
|
|
235 | (1) |
|
13.3.3 Software of the System |
|
|
235 | (1) |
|
13.4 Layers of the System Architecture |
|
|
236 | (1) |
|
|
236 | (1) |
|
|
237 | (1) |
|
|
237 | (1) |
|
|
237 | (1) |
|
|
237 | (2) |
|
13.6 Layout of the Sprinkler System |
|
|
239 | (1) |
|
|
239 | (2) |
|
13.8 Results and Discussion |
|
|
241 | (1) |
|
|
242 | (3) |
|
|
242 | (3) |
|
14 A Behaviour-Based Authentication to Internet of Things Using Machine Learning |
|
|
245 | (20) |
|
|
|
|
246 | (1) |
|
14.2 Basics of Internet of Things (IoT) |
|
|
246 | (5) |
|
14.2.1 The IoT Reference Model |
|
|
248 | (1) |
|
|
249 | (1) |
|
|
249 | (1) |
|
14.2.2.2 Connectivity to Cloud |
|
|
250 | (1) |
|
|
250 | (1) |
|
|
250 | (1) |
|
14.2.3 Utilization of Internet of Things (IoT) |
|
|
250 | (1) |
|
14.3 Authentication in IoT |
|
|
251 | (4) |
|
14.3.1 Methods of Authentication |
|
|
251 | (1) |
|
14.3.1.1 Authentication Based on Knowledge |
|
|
252 | (1) |
|
14.3.1.2 Authentication Based on Possession |
|
|
252 | (1) |
|
14.3.1.3 Authentication Based on Biometric |
|
|
253 | (2) |
|
14.4 User Authentication Based on Behavioral-Biometric |
|
|
255 | (3) |
|
|
256 | (1) |
|
14.4.1.1 Supervised Machine Learning |
|
|
256 | (1) |
|
14.4.1.2 Unsupervised Machine Learning |
|
|
256 | (1) |
|
14.4.2 Machine Learning Algorithms |
|
|
257 | (1) |
|
|
257 | (1) |
|
14.4.2.2 Multilayer Perceptron |
|
|
257 | (1) |
|
|
257 | (1) |
|
|
258 | (1) |
|
14.4.2.5 Instance-Based Learning |
|
|
258 | (1) |
|
14.4.2.6 Bootstrap Aggregating |
|
|
258 | (1) |
|
|
258 | (1) |
|
14.5 Threats and Challenges in the Current Security Solution for IoT |
|
|
258 | (1) |
|
14.6 Proposed Methodology |
|
|
259 | (2) |
|
14.6.1 Collection of Gait Dataset |
|
|
259 | (1) |
|
14.6.2 Gait Data Preprocessing |
|
|
259 | (1) |
|
14.6.3 Reduction in Data Size |
|
|
260 | (1) |
|
|
260 | (1) |
|
|
260 | (1) |
|
14.7 Conclusion and Future Work |
|
|
261 | (4) |
|
|
261 | (4) |
|
15 A Fuzzy Goal Programming Model for Quality Monitoring of Fruits during Shipment Overseas |
|
|
265 | (20) |
|
|
|
|
|
|
265 | (1) |
|
|
266 | (5) |
|
|
266 | (1) |
|
|
266 | (2) |
|
|
268 | (3) |
|
|
271 | (1) |
|
|
271 | (1) |
|
15.3.2 Connections and Circuitry |
|
|
271 | (1) |
|
15.4 Optimization Framework |
|
|
271 | (4) |
|
15.4.1 Fuzzy Goal Description |
|
|
271 | (1) |
|
15.4.2 Characterizing Fuzzy Membership Function |
|
|
272 | (1) |
|
15.4.3 Construction of FGP Model |
|
|
272 | (1) |
|
15.4.4 Definition of Variables and Parameters |
|
|
273 | (1) |
|
15.4.5 Fuzzy Goal Description |
|
|
274 | (1) |
|
15.5 Creation of Database and Website |
|
|
275 | (3) |
|
15.5.1 Hosting PHP Application and Creation of MySQL Database |
|
|
275 | (1) |
|
15.5.2 Creation of API (Application Programming Interfaces) Key |
|
|
275 | (1) |
|
15.5.2.1 $api_key_value = "3mM44UaC2DjFcV_63GZ14aWJcRDNmYBMsxceu"; |
|
|
275 | (1) |
|
15.5.2.2 Preparing Mysql Database |
|
|
275 | (1) |
|
15.5.2.3 Structured Query Language (SQL) |
|
|
275 | (1) |
|
15.5.2.4 Use of HTTP (Hypertext Transfer Protocol) in Posting Request |
|
|
276 | (1) |
|
15.5.2.5 Adding a Dynamic Map to the Website |
|
|
277 | (1) |
|
15.5.2.6 Adding Dynamic Graph to the Website |
|
|
277 | (1) |
|
15.5.2.7 Adding the Download Option of the Data Set |
|
|
278 | (1) |
|
15.6 Libraries Used and Code Snipped |
|
|
278 | (2) |
|
15.7 Mode of Communication |
|
|
280 | (1) |
|
|
280 | (5) |
|
|
282 | (1) |
|
|
282 | (3) |
|
16 Internet of Things -- Definition, Architecture, Applications, Requirements and Key Research Challenges |
|
|
285 | (12) |
|
|
|
|
|
285 | (1) |
|
16.2 Defining the Term Internet of Things (IoT) |
|
|
286 | (1) |
|
|
287 | (2) |
|
16.4 Applications of Internet of Things (IoT) |
|
|
289 | (1) |
|
16.5 Requirement for Internet of Things (IoT) Implementation |
|
|
290 | (1) |
|
16.6 Key Research Challenges in Internet of Things (IoT) |
|
|
291 | (6) |
|
16.6.1 Computing, Communication and Identification |
|
|
291 | (1) |
|
16.6.2 Network Technology |
|
|
292 | (1) |
|
16.6.3 Greening of Internet of Things (IoT) |
|
|
292 | (1) |
|
|
293 | (1) |
|
|
293 | (1) |
|
16.6.6 Object Safety and Security |
|
|
293 | (1) |
|
16.6.7 Data Confidentiality and Unauthorized Access |
|
|
293 | (1) |
|
|
293 | (1) |
|
16.6.9 Network and Routing Information Security |
|
|
293 | (1) |
|
|
294 | (3) |
|
17 FinFET Technology for Low-Power Applications |
|
|
297 | (10) |
|
|
|
|
|
297 | (2) |
|
17.2 Exiting Multiple-Gate MOSFET Architectures |
|
|
299 | (2) |
|
17.3 FinFET Design and Analysis |
|
|
301 | (3) |
|
17.4 Low-Power Applications |
|
|
304 | (1) |
|
17.4.1 FinFET-Based Digital Circuit Design |
|
|
304 | (1) |
|
17.4.2 FinFET-Based Memory Design |
|
|
304 | (1) |
|
17.4.3 FinFET-Based Biosensors |
|
|
304 | (1) |
|
|
305 | (2) |
|
|
305 | (2) |
|
18 An Enhanced Power Quality Single-Source Large Step-Up Switched-Capacitor Based Multi-Level Inverter Configuration with Natural Voltage Balancing of Capacitors |
|
|
307 | (32) |
|
|
|
|
|
|
307 | (2) |
|
|
309 | (11) |
|
18.2.1 Circuit Configuration |
|
|
309 | (1) |
|
18.2.2 Generation of Output Voltage Steps |
|
|
310 | (10) |
|
18.2.3 Voltage Stress of Switches |
|
|
320 | (1) |
|
18.3 Cascaded Configuration of Suggested Topology |
|
|
320 | (1) |
|
18.4 Modulation Technique |
|
|
321 | (3) |
|
|
324 | (4) |
|
|
324 | (2) |
|
|
326 | (1) |
|
|
327 | (1) |
|
18.6 Design of Capacitors |
|
|
328 | (2) |
|
18.7 Comparative Analysis |
|
|
330 | (3) |
|
|
333 | (3) |
|
|
336 | (3) |
|
|
336 | (3) |
Index |
|
339 | |