Muutke küpsiste eelistusi

E-raamat: Design of Medical Electronic Devices

(M.R. Research, Littleton, CO, USA)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 21-Mar-2002
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780080491097
  • Formaat - PDF+DRM
  • Hind: 117,32 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 21-Mar-2002
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780080491097

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Using an engineering approach, the fundamentals of electronic medical devices are presented along with the basic medical knowledge deemed necessary for design considerations. After addressing power subsystems, chapters address a range of sensors. The processes of data acquisition and digital signal processing are also considered. The material is accompanied by examples of technologies and numerous schematic diagrams. Annotation c. Book News, Inc., Portland, OR (booknews.com)

The design of medical electronics is unique because of the background needed by the engineers and scientists involved. Often the designer is a medical or life science professional without any training in electronics or design. Likewise, few engineers are specifically trained in biomedical engineering and have little or no exposure to the specific medical requirements of these devices. Design of Medical Electronic Devices presents all essential topics necessary for basic and advanced design. All aspects of the electronics of medical devices are also covered. This is an essential book for graduate students as well as professionals involved in the design of medical equipment.

Covers every stage of the process, from design to manufacturing to implementation
Topics covered include analogue/digital conversions, data acquisition, signal processing, optics, and reliability and failure

Arvustused

"Using an engineering approach, the fundamentals of electronic medical devices are presented along with the basic medical knowledge deemed necessary for design considerations. After addressing power subsystems, chapters address a range of sensors. The processes of data acquisition and digital signal processing are also considered. The material is accompanied by examples of technologies and numerous schematic diagrams." --Book News, Inc.®, Portland, OR

Muu info

Covers every stage of the process, from design to manufacturing to implementation Topics covered include analogue/digital conversions, data acquisition, signal processing, optics, and reliability and failure
Acknowledgments xi
Introduction 1(2)
Proper Design of Power Subsystems in Medical Electronics
3(30)
Electromagnetic Interference Requirements
3(1)
Transient Voltage Protection
3(5)
Electromagnetic Interference
8(4)
Electromagnetic Interference Requirement
8(4)
Inrush Current Control
12(1)
Soft Start
13(1)
Overvoltage Protection
14(1)
Undervoltage Protection
14(2)
Overload Protection
16(1)
Snubber Circuits
17(2)
Output Filtering
19(2)
Power Failure Warning
21(1)
Flightback Switch Mode Power Supplies
22(2)
Half-Bridge Flyback Converter
24(2)
Forward Converter
26(2)
High-Voltage Defibrillators
28(5)
References
30(3)
Fundamentals of Magnetic Resonance Imaging
33(24)
Early History of Nuclear Magnetic Resonance
33(4)
General Review of MRI
37(3)
A More Detailed Overview of MRI
40(10)
The Physics of Spin
41(9)
Magnetic Resonance Imaging Hardware Design
50(3)
Pulsing and NMR Imaging
53(4)
References
56(1)
Particle Accelerator Design
57(18)
Introduction
57(3)
Heavy Particles
60(1)
Particle Accelerators
60(3)
Linear RF Accelerators
63(1)
Particles Accelerated by a Magnetic Field
64(2)
Synchrotrons
66(1)
Accelerator Hardware
67(2)
Magnetrons
69(1)
Accelerator Architecture
70(5)
Traveling Wave Accelerator System
71(1)
Standing Wave Accelerator
71(3)
References
74(1)
Sensor Characteristics
75(34)
Sensor Parameters
75(3)
Physical Principles of Sensing
78(1)
Sensor Interfacing
79(1)
Driving Bridges
80(4)
Signal-Conditioning Amplifiers
84(2)
Noise
84(2)
Instrumentation Amplifiers
86(2)
Chopper-Stabilized Amplifiers
88(1)
Isolation Amplifier
89(1)
Strain, Force, Pressure, and Flow Sensors
90(3)
High-Impedance Sensors
93(2)
High-Impedance Charge Output
95(1)
Charge-Coupled Device Sensors
95(3)
Position and Motion Sensors
98(6)
Linear Variable Differential Transformers
98(2)
Hall Effect Magnetic Sensors
100(2)
Optical Encoders
102(1)
Accelerometers
102(2)
Temperature Sensors
104(5)
References
107(2)
Data Acquisition
109(34)
Introduction
109(1)
Sample and Hold Conversion
110(1)
Multichannel Acquisition
111(1)
High-Speed Sampling in ADCs
112(4)
Selection of Drive Amplifier for ADC Performance
116(2)
Driving ADCs with Switched Capacitor Inputs
118(2)
Gain Setting and Level Shifting
120(2)
High-Speed Sampling ADC External Reference Voltage Generation
122(1)
ADC Input Protection
123(1)
Noise Considerations in High-Speed Sampling ADCs
124(4)
Multichannel Applications for Data Acquisition Systems
128(3)
External Protection of Amplifiers
131(4)
High-Speed ADC Architectures
135(8)
Basic Flash Converter Operation
135(1)
Driving Flash Converters
135(3)
Successive Approximation ADCs
138(1)
Subranging ADCs
139(2)
References
141(2)
Noise and Interference Issues in Analog Circuits
143(42)
Basic Noise Calculation in Op-Amps
143(3)
Thermal Noise
144(2)
Fundamental Op-Amp Specifications
146(5)
Input Offset Voltage
151(1)
The Noise Gain of Op-Amps
152(1)
Slew Rate and Power Bandwidth of Op-Amps
152(1)
Gain-Bandwidth Products
153(1)
Internal Noise in Op-Amps
154(3)
Noise Issues in High-Speed ADC Applications
157(2)
Proper Power Supply Decoupling
159(3)
Bypass Capacitors and Resonances
162(4)
Usage of Two or More Bypass Capacitors
166(2)
Designing Power Bus Rails in Power-Ground Planes for Noise Control
168(3)
The Effect of Trace Resistance
171(5)
ASIC Signal Integrity Issues (Ground Bounce)
176(3)
Crosstalk through PC Card Pins
179(2)
Parasitic Extraction and Verification Tools for ASIC
181(4)
References
183(2)
Hardware Approach to Digital Signal Processing
185(52)
Discrete Fast Fourier Transform
185(1)
Determining the Proper FFT Record Length
186(2)
Coherent and Noncoherent Sampling
188(1)
Coherent vs Noncoherent Sampling
189(2)
Ultrasound Application
191(3)
Discrete Time Sampling of Analog Signals
194(2)
Digital Signal Processing Techniques
196(1)
Finite Impulse Response Digital Filters
197(3)
Infinite Impulse Response Digital Filters
200(2)
Fast Fourier Transform
202(2)
FFT Hardware Implementation
204(30)
DSP Hardware
205(2)
Arithmetic Logic Unit
207(1)
Multiplier-Accumulator
208(2)
Shifter
210(1)
Data Address Generators
211(1)
Program Sequencer
212(1)
Serial Ports
213(1)
System Interface
214(1)
Interfacing ADCs and DACs to Digital Signal Processors
214(3)
Parallel ADC-to-DSP Interface
217(3)
Parallel Interfacing to DSP Processors: Writing Data to Memory-Mapped DACs
220(1)
Parallel DAC-to-DSP Interface
220(3)
Serial Interfacing to DSP Processors
223(2)
Serial ADC-to-DSP Interface
225(2)
Serial DAC-to-DSP Interface
227(2)
Interfacing I--O Ports and CODECs to DSPs
229(4)
Serial versus Parallel DSP Interface Summary
233(1)
Practical Use of DSP: DSP Helps the Hearing Impaired
234(3)
References
236(1)
Optical Sensors
237(38)
Charge-Coupled Devices
237(5)
CCD Arrays
240(1)
Interline Transfer
240(2)
Optical Fiber
242(9)
Classification and Features of Optical Fibers
244(7)
Analysis of Optical Fibers
251(6)
The Step-Index Fiber
251(6)
The Graded-Index Fiber
257(2)
CT Scanners in Medicine
259(4)
Sectional Imaging
261(2)
Digital Imaging
263(1)
The Endoscope
263(1)
Digital X Rays
264(4)
Medical Sensors from Fiber Optics
268(7)
Fiber Optics for Circulatory and Respiratory Systems
269(4)
References
273(2)
Index 275


Reinaldo Perez is Senior Engineer and Member of the Technical Staff at the Jet Propulsion Laboratory, California Institute of Technology in Pasadena, California. For the past three years, Dr. Perez has also been working with Lockheed Martin Astronautics (LMA) on the Mars Surveyor series. His primary work has been as a designer of spacecraft (or satellite) subsystems and ground support hardware for increased reliability in space environments, focusing on wireless communications hardware with built-in immunity to many kinds of noise and interference problems. He is a senior member of the IEEE, AIAA, and AIP, and serves as a board member of the Applied Computational Electromagnetics Society (ACES). In addition, Dr. Perez is an associate editor of the IEEE EMCS Journal, as well as Editor of the ACES Newsletter.