Muutke küpsiste eelistusi

E-raamat: Design of Structural Elements: Concrete, Steelwork, Masonry and Timber Designs to Eurocodes

(University College, London)
  • Formaat: 520 pages
  • Ilmumisaeg: 04-May-2022
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781000552164
  • Formaat - EPUB+DRM
  • Hind: 62,39 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 520 pages
  • Ilmumisaeg: 04-May-2022
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781000552164

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The fourth edition of Design of Structural Elements: Concrete, Steelwork, Masonry and Timber Designs to Eurocodes is a concise single-volume introduction to the design of structural elements in concrete, steel, timber, masonry and composites. It provides design principles and guidance in line with Eurocodes, current as of 2021.

Topics include the philosophy of design, sustainable development, basic structural concepts, and material properties. After an overview of structural design, the book contains self-contained chapters with numerous diagrams and worked examples on design in reinforced concrete, structural steelwork and steel/concrete composites, masonry and timber based on EN 1990-1997. Selected extracts from these publications assist familiarity. Elements considered cover reinforced concrete and composite floors, isolated foundation, cantilever retaining wall, load-bearing and panel walls, stud wall and connections.

The text is ideal for student civil and structural engineers on degree and diploma courses, and also practising civil and structural engineers and other built environment professions. The online Support Materials for adopting course instructors includes an extensive set of solutions to the problems in the book and PowerPoint slides for use in lectures: www.routledge.com/9781032076317.

Arvustused

"It has the advantage of simplified design procedures and design examples"

-- Binsheng (Ben) Zhang, Glasgow Caledonian University

Preface to the fourth edition xv
Preface to the third edition xvii
Preface to the second edition xix
Preface to the first edition xxi
Acknowledgements xxiii
1 Philosophy of design
1(18)
1.1 Introduction
1(1)
1.2 Design inputs
1(9)
1.3 Design process
10(1)
1.4 Layout of Eurocodes
11(2)
1.4.1 Principles and Application Rules
11(1)
1.4.2 Nationally determined parameters and National Annexes
12(1)
1.4.3 Annexes
13(1)
1.4.4 Non-contradictory complementary information
13(1)
1.4.5 Decimal point
13(1)
1.5 Basis of design
13(5)
1.5.1 Permissible stress design
14(1)
1.5.2 Load factor design
15(1)
1.5.3 Limit state design
15(1)
1.5.3.1 Ultimate and serviceability limit states
15(2)
1.5.3.2 Characteristic and design values
17(1)
1.6 Summary
18(1)
2 Basic technical and structural concepts
19(28)
2.1 Introduction
19(1)
2.2 Types of loading
20(7)
2.2.1 Permanent loads
21(2)
2.2.2 Variable actions
23(1)
2.2.2.1 Imposed loads
23(1)
2.2.2.2 Wind loads
23(1)
2.2.3 Load combinations and design loads
24(3)
2.3 Design loads acting on elements
27(4)
2.4 Structural analysis
31(7)
2.4.1 Equilibrium equations
32(4)
2.4.2 Formulae
36(2)
2.5 Beam design
38(4)
2.5.1 Elastic criteria
39(1)
2.5.2 Plastic criteria
40(2)
2.6 Column design
42(1)
2.7 Summary
43(4)
3 Design in reinforced concrete to EN 1992
47(174)
3.1 Introduction
47(1)
3.2 Objectives and scope
48(1)
3.3 Symbols
49(2)
3.4 Basis of design
51(1)
3.5 Material properties
51(4)
3.5.1 Characteristic compressive strength of concrete
52(1)
3.5.2 Characteristic strength of reinforcement
53(1)
3.5.3 Design strength
54(1)
3.6 Loading
55(1)
3.6.1 Characteristic load
55(1)
3.6.2 Design load
55(1)
3.7 Stress-strain curves
56(3)
3.7.1 Stress-strain curve for concrete
56(1)
3.7.2 Stress-strain curve for steel reinforcement
57(2)
3.8 Cover to bar reinforcement
59(11)
3.8.1 Bond
59(1)
3.8.2 Durability
59(9)
3.8.3 Eire protection
68(2)
3.9 Beams
70(58)
3.9.1 Singly reinforced beam design
71(1)
3.9.1.1 Bending
71(6)
3.9.1.2 Shear
77(8)
3.9.1.3 Deflection
85(3)
3.9.1.4 Beam sizing
88(1)
3.9.1.5 Reinforcement details
89(17)
3.9.2 Doubly reinforced beam design
106(1)
3.9.2.1 Compression and tensile steel areas
107(3)
3.9.3 Continuous, L and T beams
110(2)
3.9.3.1 Analysis of continuous beams
112(16)
3.9.4 Summary for beam design
128(1)
3.10 Slabs
128(30)
3.10.1 Types of slabs
130(4)
3.10.2 Design of one-way spanning solid slab
134(1)
3.10.2.1 Depth of slab
134(1)
3.10.2.2 Steel areas
135(1)
3.10.2.3 Shear
135(1)
3.10.2.4 Reinforcement details
136(10)
3.10.3 Continuous one-way spanning solid slab design
146(5)
3.10.4 Two-way spanning restrained solid slab design
151(7)
3.11 Foundations
158(13)
3.11.1 Foundation types
159(4)
3.11.2 Foundation design
163(1)
3.11.2.1 Pad footing
163(8)
3.12 Retaining walls
171(13)
3.12.1 Types of retaining walls
171(1)
3.12.1.1 Gravity walls
171(1)
3.12.1.2 Flexible walls
172(1)
3.12.2 Design of cantilever walls
173(1)
3.12.2.1 Soil pressures
173(1)
3.12.2.2 Stability
174(2)
3.12.2.3 Reinforcement areas
176(8)
3.13 Design of braced columns
184(33)
3.13.1 Braced and unbraced columns
184(1)
3.13.2 Column failure modes
185(2)
3.13.3 Slenderness ratio
187(3)
3.13.4 Threshold slenderness ratio, Xlim
190(3)
3.13.5 Design of braced columns
193(7)
3.13.5.1 Design of columns when λ < λlim
200(5)
3.13.5.2 Design of columns when λ > λlim
205(2)
3.13.6 Biaxial bending
207(1)
3.13.6.1 Manual for the design of concrete structures to Eurocode 2, IStructE, 2006
208(1)
3.13.7 Reinforcement details for columns
209(1)
3.13.7.1 Longitudinal reinforcement
209(1)
3.13.7.2 Links
209(8)
3.14 Summary
217(4)
4 Design in structural steelwork to EN 1993 and EN 1994
221(142)
4.1 Introduction
221(1)
4.2 Iron and steel
222(1)
4.2.1 Manufacture
222(1)
4.2.2 Material behaviour
223(1)
4.3 Structural steel and steel sections
223(2)
4.4 Symbols
225(3)
4.5 General principles and design methods
228(1)
4.6 Loading
229(1)
4.7 Design strengths
230(1)
4.8 Design of steel beams and joists
231(34)
4.8.1 Modes of failure
231(1)
4.8.1.1 Bending
231(1)
4.8.1.2 Local buckling
231(1)
4.8.1.3 Shear
231(1)
4.8.1.4 Shear buckling
231(1)
4.8.1.5 Web bearing and buckling
232(1)
4.8.1.6 Lateral torsional buckling
232(1)
4.8.1.7 Deflection
233(1)
4.8.2 Summary of design process
233(1)
4.8.3 Initial section selection
234(1)
4.8.4 Classification of section
235(1)
4.8.4.1 Strength classification
235(1)
4.8.4.2 Section classification
235(1)
4.8.5 Shear
236(1)
4.8.6 Resistance of cross sections to bending
237(4)
4.8.7 Bending and shear
241(3)
4.8.8 Deflection
244(1)
4.8.9 Web design
245(5)
4.8.10 Stiffener design
250(5)
4.8.11 Lateral torsional buckling
255(1)
4.8.11.1 Effective length
255(1)
4.8.11.2 Lateral torsional buckling resistance
256(1)
4.8.11.3 Elastic critical moment, Mcr
257(2)
4.8.11.4 Simplified expression for λlt
259(3)
4.8.11.5 Alternative method for rolled sections
262(1)
4.8.11.6 Cantilever beams
263(2)
4.8.11.7 Summary of design procedures
265(1)
4.9 Design of compression members
265(38)
4.9.1 Struts
265(3)
4.9.2 Effective length/buckling length
268(4)
4.9.3 Columns with bending moments
272(1)
4.9.3.1 Resistance of cross sections -- bending and axial force
273(1)
4.9.3.2 Buckling resistance check - combined bending and axial compression
274(6)
4.9.4 Column design in `simple' structures
280(5)
4.9.5 Summary of design procedures for compression members
285(1)
4.9.6 Design of cased columns
286(1)
4.9.6.1 Axially loaded columns
286(6)
4.9.6.2 Cased columns subjected to combined compression and bending
292(7)
4.9.7 Design of column baseplates
299(4)
4.10 Floor systems for steel-framed structures
303(28)
4.10.1 Composite slabs
308(1)
4.10.2 Composite beams
309(1)
4.10.2.1 Effective breadth of concrete slab, beff
310(1)
4.10.2.2 Moment capacity
310(4)
4.10.2.3 Shear capacity
314(1)
4.10.2.4 Shear connectors
314(5)
4.10.2.5 Longitudinal shear capacity
319(3)
4.10.2.6 Deflection
322(9)
4.11 Design of connections
331(27)
4.11.1 Bolted connections
331(1)
4.11.2 Fastener spacing and edge/end distances
332(1)
4.11.3 Strength checks
333(1)
4.11.3.1 Ordinary bolts
333(4)
4.11.3.2 Preloaded assemblies
337(1)
4.11.4 Design of bolted connections
338(1)
4.11.4.1 Splice connections
339(3)
4.11.4.2 Bolted beam-to-column connection using an end plate
342(6)
4.11.4.3 Bolted beam-to-column connection using web cleats
348(7)
4.11.5 Welded connections
355(1)
4.11.5.1 Strength of welds
355(1)
4.11.5.2 Design details
356(2)
4.12 Summary
358(5)
5 Design in unreinforced masonry to EN 1996
363(64)
5.1 Introduction
363(2)
5.2 Materials
365(7)
5.2.1 Bricks
366(3)
5.2.2 Blocks
369(1)
5.2.3 Mortars
370(2)
5.3 Masonry design
372(1)
5.4 Symbols
372(3)
5.5 Design of vertically loaded masonry walls
375(33)
5.5.1 Ultimate design loads
376(1)
5.5.1.1 Characteristic actions
376(1)
5.5.1.2 Partial safety factors for loads
376(1)
5.5.2 Design compressive strength of masonry
377(1)
5.5.2.1 Characteristic compressive strength of masonry
377(4)
5.5.2.2 Partial factor for materials
381(1)
5.5.3 Capacity reduction factor
382(1)
5.5.3.1 Capacity reduction factor at the top and bottom of walls
382(4)
5.5.3.2 Capacity reduction factor in middle of wall
386(3)
5.5.4 Area reduction factor
389(1)
5.5.5 Design vertical load resistance of masonry walls
389(19)
5.6 Design of laterally loaded wall panels
408(15)
5.6.1 Characteristic flexural strength of masonry
408(1)
5.6.2 Orthogonal ratio
409(1)
5.6.3 Support conditions
410(1)
5.6.4 Limiting dimensions
411(2)
5.6.5 Basis of design
413(10)
5.7 Summary
423(4)
6 Design in timber to EN 1995
427(50)
6.1 Introduction
427(1)
6.2 Stress grading
428(2)
6.3 Strength classes
430(1)
6.4 Grade stresses and characteristic strengths
430(6)
6.5 Design principles
436(2)
6.5.1 Basis of design
436(1)
6.5.2 Actions
437(1)
6.6 Timber design
438(1)
6.7 Symbols
438(2)
6.8 Flexural members
440(19)
6.8.1 Effective span
440(1)
6.8.2 Bending
440(2)
6.8.3 Deflection
442(3)
6.8.4 Vibration
445(2)
6.8.5 Lateral buckling of beams
447(2)
6.8.6 Shear
449(1)
6.8.7 Compression perpendicular to the grain
450(9)
6.9 Compression members
459(8)
6.9.1 Relative slenderness ratio
460(2)
6.9.2 Columns subject to axial compression
462(1)
6.9.2.1 Columns subject to axial load and bending
462(5)
6.10 Design of stud walls
467(2)
6.11 Summary
469(8)
Appendix A Permissible stress and load factor design 471 Appendix B: Dimensions and properties of steel universal beams and columns 477(4)
Appendix C Equations 6.10, 6.10a and 6.10b in EN 1990 481(4)
Appendix D Second moment of area of a composite beam 485(2)
Appendix E References 487(4)
Index 491
Dr Chanakya Arya BSc, PhD, DIC, CEng, MICE, is Associate Professor at University College London.