Muutke küpsiste eelistusi

E-raamat: Diabetic Foot Ulcers Grand Challenge: Second Challenge, DFUC 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings

Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 61,74 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the Second Diabetic Foot Ulcers Grand Challenge, DFUC 2021, which was held on September 27, 2021, in conjunction with the 24th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2021. The challenge took place virtually due to the COVID-19 pandemic.

The 6 full papers included in this book were carefully reviewed and selected from 14 submissions. There is also an overview paper on the challenge and datasets and one summary paper of DFUC 2021. 


Development of Diabetic Foot Ulcer Datasets: An Overview.- DFUC2021
Challenge Papers.- Convolutional Nets Versus Vision Transformers for Diabetic
Foot Ulcer Classification.- Boosting EffcientNets Ensemble Performance via
Pseudo-Labels and Synthetic Images by pix2pixHD for Infection and Ischaemia
Classification in Diabetic Foot Ulcers.- Bias Adjustable Activation Network
for Imbalanced data Diabetic Foot Ulcer Challenge 2021.- Effcient
Multi-model Vision Transformer based on Feature Fusion for Classification of
DFUC2021 Challenge.- Diabetic Foot Ulcer Classification using Well-known Deep
Learning Architectures.- Diabetic Foot Ulcer Grand Challenge 2021: Evaluation
and Summary.- Post Challenge Paper.- Deep Subspace analysing for
Semi-Supervised multi-label classification of Diabetic Foot Ulcer.