Muutke küpsiste eelistusi

E-raamat: Differential Equations with Small Parameters and Relaxation Oscillations

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A large amount of work has been done on ordinary differ­ ential equations with small parameters multiplying deriv­ atives. This book investigates questions related to the asymptotic calculation of relaxation oscillations, which are periodic solutions formed of sections of both sl- and fast-motion parts of phase trajectories. A detailed discussion of solutions of differential equations involving small parameters is given for regions near singular points. The main results examined were obtained by L. S. Pontryagin and the authors. Other works have also been taken into account: A. A. Dorodnitsyn's investigations of Van der Pol's equation, results obtained by N. A. Zheleztsov and L. V. Rodygin concerning relaxation oscillations in electronic devices, and results due to A. N. Tikhonov and A. B. Vasil'eva concerning differential equations with small parameters multiplying certain derivatives. E. F. Mishchenko N. Kh. Rozov v CONTENTS Chapter I. Dependence of Solutions on Small Parameters. Applications of Relaxation Oscillations 1. Smooth Dependence. Poincare's Theorem . 1 2. Dependence of Solutions on a Parameter, on an Infinite Time Interval 3 3. Equations with Small Parameters 4 Multiplying Derivatives 4. Second-Order Systems. Fast and Slow Motion.

Muu info

Springer Book Archives
I. Dependence of Solutions on Small Parameters. Applications of
Relaxation Oscillations.-
1. Smooth Dependence. Poincarés Theorem.-
2.
Dependence of Solutions on a Parameter, on an Infinite Time Interval.-
3.
Equations with Small Parameters Multiplying Derivatives.-
4. Second-Order
Systems. Fast and Slow Motion. Relaxation Oscillations.-
5. Systems of
Arbitrary Order. Fast and Slow Motion. Relaxation Oscillations.-
6. Solutions
of the Degenerate Equation System.-
7. Asymptotic Expansions of Solutions
with Respect to a Parameter.-
8. A Sketch of the Principal Results.- II.
Second-Order Systems. Asymptotic Calculation of Solutions.-
1. Assumptions
and Definitions.-
2. The Zeroth Approximation.-
3. Asymptotic Approximations
on Slow-Motion Parts of the Trajectory.-
4. Proof of the Asymptotic
Representations of the Slow-Motion Part.-
5. Local Coordinates in the
Neighborhood of a Junction Point.-
6. Asymptotic Approximations of the
Trajectory on the Initial Part of a Junction.-
7. The Relation between
Asymptotic Representations and Actual Trajectories in the Initial Junction
Section.-
8. Special Variables for the Junction Section.-
9. A Riccati
Equation.-
10. Asymptotic Approximations for the Trajectory in the
Neighborhood of a Junction Point.-
11. The Relation between Asymptotic
Approximations and Actual Trajectories in the Immediate Vicinity of a
Junction Point.-
12. Asymptotic Series for the Coefficients of the Expansion
Near a Junction Point.-
13. Regularization of Improper Integrals.-
14.
Asymptotic Expansions for the End of a Junction Part of a Trajectory.-
15.
The Relation between Asymptotic Approximations and Actual Trajectories at the
End of a Junction Part.-
16. Proof of Asymptotic Representations for the
Junction Part.-
17. Asymptotic Approximations of theTrajectory on the
Fast-Motion Part.-
18. Derivation of Asymptotic Representations for the
Fast-Motion Part.-
19. Special Variables for the Drop Part.-
20. Asymptotic
Approximations of the Drop Part of the Trajectory.-
21. Proof of Asymptotic
Representations for the Drop Part of the Trajectory.-
22. Asymptotic
Approximations of the Trajectory for Initial Slow-Motion and Drop Parts.-
III. Second-Order Systems. Almost-Discontinuous Periodic solutions.-
1.
Existence and Uniqueness of an Almost-Discontinuous Periodic Solution.-
2.
Asymptotic Approximations for the Trajectory of a Periodic Solution.-
3.
Calculation of the Slow-Motion Time.-
4. Calculation of the Junction Time.-
5. Calculation of the Fast-Motion Time.-
6. Calculation of the Drop Time.-
7.
An Asymptotic Formula for the Relaxation-Oscillation Period.-
8. Van der
Pols Equation. Dorodnitsyns Formula.- IV. Systems of Arbitrary Order.
Asymptotic Calculation of Solutions.-
1. Basic Assumptions.-
2. The Zeroth
Approximation.-
3. Local Coordinates in the Neighborhood of a Junction
Point.-
4. Asymptotic Approximations of a Trajectory at the Beginning of a
Junction Section.-
5. Asymptotic Approximations for the Trajectory in the
Neighborhood of a Junction Point.-
6. Asymptotic Approximation of a
Trajectory at the End of a Junction Section.-
7. The Displacement Vector.- V.
Systems of Arbitrary Order. Almost-Discontinuous Periodic Solutions.-
1.
Auxiliary Results.-
2. The Existence of an Almost-Discontinuous Periodic
Solution. Asymptotic Calculation of the Trajectory.-
3. An Asymptotic Formula
for the Period of Relaxation Oscillations.- References.