Muutke küpsiste eelistusi

E-raamat: Digital Electronics 1: Combinational Logic Circuits

  • Formaat: PDF+DRM
  • Ilmumisaeg: 17-Jun-2016
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119318644
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 171,60 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 17-Jun-2016
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119318644
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The book presents the principles of combinational and sequential logic and the underlying techniques for the analysis and design of digital circuits. The approach is gradual and relatively independent of each other chapters. To facilitate the assimilation and practical implementation of various concepts, the book is complemented by a selection of practical exercises corrected.

It deals with the analysis and design digital circuits, logic gates to machinery (PLCs) with a finite number of states, and contains 14 chapters divided into 4 volumes.



The omnipresence of electronic devices in our everyday lives has been accompanied by the downscaling of chip feature sizes and the ever increasing complexity of digital circuits.

This book is devoted to the analysis and design of digital circuits, where the signal can assume only two possible logic levels. It deals with the basic principles and concepts of digital electronics. It addresses all aspects of combinational logic and provides a detailed understanding of logic gates that are the basic components in the implementation of circuits used to perform functions and operations of Boolean algebra. Combinational logic circuits are characterized by outputs that depend only on the actual input values.

Efficient techniques to derive logic equations are proposed together with methods of analysis and synthesis of combinational logic circuits. Each chapter is well structured and is supplemented by a selection of solved exercises covering logic design practices.

Preface ix
Chapter 1 Number Systems
1(48)
1.1 Introduction
1(1)
1.2 Decimal numbers
1(1)
1.3 Binary numbers
2(2)
1.4 Octal numbers
4(1)
1.5 Hexadecimal numeration
5(1)
1.6 Representation in a radix B
6(1)
1.7 Binary-coded decimal numbers
7(1)
1.8 Representations of signed integers
8(5)
1.8.1 Sign-magnitude representation
9(1)
1.8.2 Two's complement representation
10(2)
1.8.3 Excess-E representation
12(1)
1.9 Representation of the fractional part of a number
13(3)
1.10 Arithmetic operations on binary numbers
16(4)
1.10.1 Addition
16(1)
1.10.2 Subtraction
17(1)
1.10.3 Multiplication
18(1)
1.10.4 Division
19(1)
1.11 Representation of real numbers
20(8)
1.11.1 Fixed-point representation
20(2)
1.11.2 Floating-point representation
22(6)
1.12 Data representation
28(3)
1.12.1 Gray code
28(1)
1.12.2 p-out-of-n code
29(2)
1.12.3 ASCII code
31(1)
1.12.4 Other codes
31(1)
1.13 Codes to protect against errors
31(5)
1.13.1 Parity bit
31(2)
1.13.2 Error correcting codes
33(3)
1.14 Exercises
36(2)
1.15 Solutions
38(11)
Chapter 2 Logic Gates
49(66)
2.1 Introduction
49(1)
2.2 Logic gates
50(4)
2.2.1 NOT gate
51(1)
2.2.2 AND gate
51(1)
2.2.3 OR gate
52(1)
2.2.4 XOR gate
52(1)
2.2.5 Complementary logic gates
53(1)
2.3 Three-state buffer
54(1)
2.4 Logic function
54(1)
2.5 The correspondence between a truth table and a logic function
55(2)
2.6 Boolean algebra
57(19)
2.6.1 Boolean algebra theorems
59(6)
2.6.2 Karnaugh maps
65(8)
2.6.3 Simplification of logic functions with multiple outputs
73(1)
2.6.4 Factorization of logic functions
74(2)
2.7 Multi-level logic circuit implementation
76(13)
2.7.1 Examples
77(1)
2.7.2 NAND gate logic circuit
78(2)
2.7.3 NOR gate based logic circuit
80(2)
2.7.4 Representation based on XOR and AND operators
82(7)
2.8 Practical considerations
89(4)
2.8.1 Timing diagram for a logic circuit
90(1)
2.8.2 Static hazard
90(2)
2.8.3 Dynamic hazard
92(1)
2.9 Demonstration of some Boolean algebra identities
93(4)
2.10 Exercises
97(4)
2.11 Solutions
101(14)
Chapter 3 Function Blocks of Combinational Logic
115(88)
3.1 Introduction
115(1)
3.2 Multiplexer
115(6)
3.3 Demultiplexer and decoder
121(6)
3.4 Implementation of logic functions using multiplexers or decoders
127(3)
3.4.1 Multiplexer
127(2)
3.4.2 Decoder
129(1)
3.5 Encoders
130(13)
3.5.1 4:2 encoder
131(3)
3.5.2 8:3 encoder
134(2)
3.5.3 Priority encoder
136(7)
3.6 Transcoders
143(12)
3.6.1 Binary code and Gray code
143(6)
3.6.2 BCD and excess-3 code
149(6)
3.7 Parity check generator
155(5)
3.8 Barrel shifter
160(5)
3.9 Exercises
165(8)
3.10 Solutions
173(30)
Chapter 4 Systematic Methods for the Simplification of Logic Functions
203(54)
4.1 Introduction
203(1)
4.2 Definitions and reminders
203(2)
4.2.1 Definitions
204(1)
4.2.2 Minimization principle of a logic function
204(1)
4.3 Karnaugh maps
205(15)
4.3.1 Function of five variables
205(2)
4.3.2 Function of six variables
207(1)
4.3.3 Karnaugh map with entered variable
208(7)
4.3.4 Applications
215(5)
4.3.5 Representation based on the XOR and AND operators
220(1)
4.4 Systematic methods for simplification
220(21)
4.4.1 Determination of prime implicants
221(3)
4.4.2 Finding the constitutive terms of a minimal expression
224(11)
4.4.3 Quine--McCluskey technique: simplification of incompletely defined functions
235(1)
4.4.4 Simplification of functions with multiple outputs
235(6)
4.5 Exercises
241(2)
4.6 Solutions
243(14)
Bibliography 257(2)
Index 259
Tertulien Ndjountche received a PhD degree in electrical engineering from Erlangen-Nuremberg University in Germany. He has worked as a professor and researcher at universities in Germany and Canada. He has published numerous technical papers and books in his fields of interest.