Muutke küpsiste eelistusi

E-raamat: Digital Holography for MEMS and Microsystem Metrology

(Nanyang Technological University, Singapore)
  • Formaat - EPUB+DRM
  • Hind: 130,85 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Approaching the topic of digital holography from the practical perspective of industrial inspection, Digital Holography for MEMS and Microsystem Metrology describes the process of digital holography and its growing applications for MEMS characterization, residual stress measurement, design and evaluation, and device testing and inspection. Asundi also provides a thorough theoretical grounding that enables the reader to understand basic concepts and thus identify areas where this technique can be adopted. This combination of both practical and theoretical approach will ensure the book's relevance and appeal to both researchers and engineers keen to evaluate the potential of digital holography for integration into their existing machines and processes.

Addresses particle characterization where digital holography has proven capability for dynamic measurement of particles in 3D for sizing and shape characterization, with applications in microfluidics as well as crystallization and aerosol detection studies. Discusses digital reflection holography, digital transmission holography, digital in-line holography, and digital holographic tomography and applications. Covers other applications including micro-optical and diffractive optical systems and the testing of these components, and bio-imaging.
About the Editor xi
Contributors xiii
Series Preface xvii
Acknowledgements xix
Abbreviations xxi
1 Introduction 1(6)
Anand Asundi
2 Digital Reflection Holography and Applications 7(44)
Vijay R. Singh
Anand Asundi
2.1 Introduction to Digital Holography and Methods
7(6)
2.1.1 Holography and Digital Holography
7(2)
2.1.2 Digital Recording Mechanism
9(1)
2.1.3 Numerical Reconstruction Methods
10(3)
2.2 Reflection Digital Holographic Microscope (DHM) Systems Development
13(10)
2.2.1 Optical Systems and Methodology
13(10)
2.3 3D Imaging, Static and Dynamic Measurements
23(8)
2.3.1 Numerical Phase and 3D Measurements
23(2)
2.3.2 Digital Holographic Interferometry
25(6)
2.4 MEMS/Microsystems Characterization Applications
31(19)
2.4.1 3D Measurements
31(4)
2.4.2 Static Measurements and Dynamic Interferometric Measurement
35(4)
2.4.3 Vibration Analysis
39(11)
References
50(1)
3 Digital Transmission Holography and Applications 51(58)
Qu Weijuan
3.1 Historical Introduction
51(2)
3.2 The Foundation of Digital Holography
53(20)
3.2.1 Theoretical Analysis of Wavefront Interference
58(12)
3.2.2 Digital Hologram Recording and Reconstruction
70(1)
3.2.3 Different Numerical Reconstruction Algorithms
71(2)
3.3 Digital Holographic Microscopy System
73(29)
3.3.1 Digital Holographic Microscopy with Physical Spherical Phase Compensation
74(5)
3.3.2 Lens-Less Common-Path Digital Holographic Microscope
79(5)
3.3.3 Common-Path Digital Holographic Microscope
84(8)
3.3.4 Digital Holographic Microscopy with Quasi-Physical Spherical Phase Compensation: Light with Long Coherence Length
92(7)
3.3.5 Digital Holographic Microscopy with Quasi-Physical Spherical Phase Compensation: Light with Short Coherence Length
99(3)
3.4 Conclusion
102(2)
References
104(5)
4 Digital In-Line Holography and Applications 109(30)
Tolima Khanam
4.1 Background
109(2)
4.2 Digital In-Line Holography
111(3)
4.2.1 Recording and Reconstruction
111(3)
4.3 Methodology for 2D Measurement of Micro-Particles
114(6)
4.3.1 Numerical Reconstruction, Pre-Processing and Background Correction
114(2)
4.3.2 Image Segmentation
116(1)
4.3.3 Particle Focusing
117(1)
4.3.4 Particle Size Measurement
118(2)
4.4 Validation and Performance of the 2D Measurement Method
120(8)
4.4.1 Verification of the Focusing Algorithm
121(2)
4.4.2 Spherical Beads on a Glass Slide
123(1)
4.4.3 Microspheres in a Flowing System
124(1)
4.4.4 10 pm Microspheres Suspension
125(1)
4.4.5 Measurement of Microfibers
125(3)
4.5 Methodology for 3D Measurement of Micro-Fibers
128(6)
4.5.1 Method 1: The 3D Point Cloud Method
129(1)
4.5.2 Method 2: The Superimposition Method
130(4)
4.6 Validation and Performance of the 3D Measurement Methods
134(2)
4.6.1 Experiment with a Single Fiber
134(1)
4.6.2 3D Measurements of Micro-Fibers in Suspension
135(1)
4.7 Conclusion
136(1)
References
137(2)
5 Other Applications 139(60)
5.1 Recording Plane Division Multiplexing (RDM) in Digital Holography for Resolution Enhancement
141(20)
Caojin Yuan
Hongchen Zhai
5.1.1 Introduction of the Recording Plane Division Multiplexing Technique
141(6)
5.1.1.1 The SM Technique
142(1)
5.1.1.2 The ADM Technique
143(2)
5.1.1.3 The WDM Technique
145(1)
5.1.1.4 The PM Technique
146(1)
5.1.2 RDM Implemented in Pulsed Digital Holography for Ultra-Fast Recording
147(5)
5.1.2.1 Introduction
147(1)
5.1.2.2 AMD in the Pulsed Digital Holography
148(2)
5.1.2.3 WDM in Pulsed Digital Holography
150(2)
5.1.3 RDM Implemented by Digital Holography for Spatial Resolution Enhancement
152(7)
5.1.3.1 Introduction
152(1)
5.1.3.2 AMD in Digital Holography
153(3)
5.1.3.3 AMD and PM in Digital Holography
156(3)
5.1.4 Conclusion
159(1)
References
160(1)
5.2 Development of Digital Holographic Tomography
161(16)
Yu Yingjie
5.2.1 Introduction
161(1)
5.2.2 Classification of Digital Holographic Tomography
162(4)
5.2.3 Principle of Digital Holographic Tomography
166(4)
5.2.3.1 Principle of Digital Holography
166(1)
5.2.3.2 Reconstruction Principle of Computer Tomography
166(2)
5.2.3.3 CT Reconstruction Algorithms
168(2)
5.2.4 Application of DHT
170(5)
5.2.4.1 Detection of Biological Tissue
170(2)
5.2.4.2 Material Detection
172(3)
References
175(2)
5.3 Digital Holographic Interferometry for Phase Distribution Measurement
177(22)
Jianlin Zhao
5.3.1 Measurement Principle of Digital Holographic Interferometry
177(6)
5.3.1.1 Principle of Phase Measurement of the Object Wave Field
178(2)
5.3.1.2 Principle of Digital Holographic Interferometry
180(3)
5.3.2 Applications of Digital Holographic Interferometry in Surface Profile Testing of MEMS/MOEMS
183(2)
5.3.3 Applications of Digital Holographic Interferometry in Measuring Refractive Index Distribution
185(10)
5.3.3.1 Measurement of Light-Induced Index Change in Photorefractive Crystals
186(5)
5.3.3.2 Measurement of Acoustic Standing Wave Field
191(1)
5.3.3.3 Measurement of Plasma Plume Field
192(1)
5.3.3.4 Measurement of Temperature Distribution in Air Field
193(1)
5.3.3.5 Visualization Measurement of Turbulent Flow Field in Water
194(1)
References
195(4)
6 Conclusion 199(2)
Anand Asundi
Index 201
Anand Asundi, Nanyang Technological University, Singapore Anand Asundi is Professor and Deputy Director of the Advanced Materials Research Centre at Nanyang Technological University in Singapore. His research interests are in photomechanics and optical sensors & he has published over 200 papers in peer-reviewed journals and presented invited and plenary talks at international conferences. He has also chaired and organized numerous conferences in Singapore and other parts of the world. He is Editor of Optics and Lasers in Engineering and on the Board of Directors of SPIE, and a fellow of the Institute of Engineers, Singapore and SPIE. He also holds advisory professorial appointments at Tongji University, Shanghai University and Harbin Institute of Technology, China. He is Chairman of the Asian Committee on Experimental Mechanics and the Asia Pacific Committee on Smart and Nano Materials both of which he co-founded.