Muutke küpsiste eelistusi

E-raamat: Digital Processing: Optical Transmission and Coherent Receiving Techniques

(Huawei Technologies, Munich, Germany)
  • Formaat: 508 pages
  • Sari: Optics and Photonics
  • Ilmumisaeg: 12-Jul-2017
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781466506718
  • Formaat - PDF+DRM
  • Hind: 240,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 508 pages
  • Sari: Optics and Photonics
  • Ilmumisaeg: 12-Jul-2017
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781466506718

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"Preface Optical communication technology has been extensively developed over the last 50 years, since the proposed idea by Kao and Hockham [ 1]. However, only over the last 15 years have the concepts of communication foundation, that is, the modulation and demodulation techniques, been applied. This is possible due to processing signals using real and imaginary components in the baseband in the digital domain. The baseband signals can be recovered from the optical passband region using polarization and phase diversity techniques, as well as technology that was developed in the mid-1980s. The principal thrust in the current technique and technology differs distinctively in the processing of baseband signals in the discrete/sampled digital domain with the aid of ultra-high-speed digital signal processors and analog-to-digital and digital-to-analog converters. Thence, algorithms are required for such digital processing systems. Over the years, we have also witnessed intensive development of digital signal processing algorithms for receivers in wireless transceivers, and especially in band-limited transmission lines to support high-speed data communications [ 2] for the Internet in its early development phase. We have now witnessed the applications and further development of the algorithms from wireless and digital modems to signal processing in lightwave coherent systems and networks. This book is written to introduce this new and important development direction of optical communication technology. Currently, many research groups and equipment manufacturers attempt to produce real-time processors for practical deployment of these DSP-based coherent transmission systems"--

"This book describes modern coherent receiving techniques for optical transmission and aspects of modern digital optical communications in the most basic lines. The chapters provide a fundamental understanding of advanced receiving techniques for transport in the optical and electric domains of multi-gigabits per second by coherent mixing in the optical domain, and then processing in the digital domain at the sampling speed of an extremely high rate. The book also includes simplified descriptions of modulation techniques for such digital transmission systems carried by light waves. It discusses the basic aspects of modern digital optical communications in the most basic lines. In addition, the book covers digital processing techniques and basic algorithms to compensate for impairments and carrier recovery, as well as noise models, analysis, and impact on transmission system performance"--

With coherent mixing in the optical domain and processing in the digital domain, advanced receiving techniques employing ultra-high speed sampling rates have progressed tremendously over the last few years. These advances have brought coherent reception systems for lightwave-carried information to the next stage, resulting in ultra-high capacity global internetworking. Digital Processing: Optical Transmission and Coherent Receiving Techniques describes modern coherent receiving techniques for optical transmission and aspects of modern digital optical communications in the most basic lines.

The book includes simplified descriptions of modulation techniques for such digital transmission systems carried by light waves. It discusses the basic aspects of modern digital optical communications in the most basic lines. In addition, the book covers digital processing techniques and basic algorithms to compensate for impairments and carrier recovery, as well as noise models, analysis, and transmission system performance.

Preface xv
Author xix
Abbreviations xxi
1 Overview of Optical Fiber Communications and DSP-Based Transmission Systems
1(24)
1.1 Introduction
1(2)
1.2 From Few Mb/s to Tb/s: Transmission and Receiving for Optical Communications Systems
3(8)
1.2.1 Guiding Lightwaves over the Last 40 Years
3(5)
1.2.2 Guiding Lightwaves: Single Mode, Multimode, and Few Mode
8(1)
1.2.3 Modulation Formats: Intensity to Phase Modulation, Direct to External Modulation
8(1)
1.2.4 Coherent and Incoherent Receiving Techniques
9(1)
1.2.5 Digital Processing in Advanced Optical Communication Systems
10(1)
1.3 Digital Modulation Formats
11(7)
1.3.1 Modulation Formats
11(2)
1.3.2 Pulse Shaping and Modulations for High Spectral Efficiency
13(1)
1.3.2.1 Partial Response
13(2)
1.3.2.2 Nyquist Pulse Shaping
15(3)
1.4 Optical Demodulation: Phase and Polarization Diversity Technique
18(5)
1.5 Organization of the Book
Chapters
23(2)
References
24(1)
2 Optical Fibers: Guiding and Propagation Properties
25(96)
2.1 Optical Fibers: Circular Optical Waveguides
25(17)
2.1.1 General Aspects
25(1)
2.1.2 Optical Fiber: General Properties
26(1)
2.1.2.1 Geometrical Structures and Index Profile
26(3)
2.1.3 Fundamental Mode of Weakly Guiding Fibers
29(1)
2.1.3.1 Solutions of the Wave Equation for Step-Index Fiber
30(1)
2.1.3.2 Single and Few Mode Conditions
31(5)
2.1.3.3 Gaussian Approximation: Fundamental Mode Revisited
36(2)
2.1.3.4 Cut-Off Properties
38(2)
2.1.3.5 Power Distribution
40(1)
2.1.3.6 Approximation of Spot-Size r0 of a Step-Index Fiber
41(1)
2.1.4 Equivalent-Step Index Description
41(1)
2.2 Nonlinear Optical Effects
42(7)
2.2.1 Nonlinear Self-Phase Modulation Effects
42(1)
2.2.2 Self-Phase Modulation
43(1)
2.2.3 Cross-Phase Modulation
44(1)
2.2.4 Stimulated Scattering Effects
45(1)
2.2.4.1 Stimulated Brillouin Scattering
46(1)
2.2.4.2 Stimulated Raman Scattering
47(1)
2.2.4.3 Four-Wave Mixing Effects
48(1)
2.3 Signal Attenuation in Optical Fibers
49(4)
2.3.1 Intrinsic or Material Absorption Losses
49(1)
2.3.2 Waveguide Losses
50(2)
2.3.3 Attenuation Coefficient
52(1)
2.4 Signal Distortion in Optical Fibers
53(12)
2.4.1 Material Dispersion
55(3)
2.4.2 Waveguide Dispersion
58(3)
2.4.2.1 Alternative Expression for Waveguide Dispersion Parameter
61(1)
2.4.2.2 Higher-Order Dispersion
62(1)
2.4.3 Polarization Mode Dispersion
63(2)
2.5 Transfer Function of Single-Mode Fibers
65(13)
2.5.1 Linear Transfer Function
65(7)
2.5.2 Nonlinear Fiber Transfer Function
72(5)
2.5.3 Transmission Bit Rate and the Dispersion Factor
77(1)
2.6 Fiber Nonlinearity Revisited
78(9)
2.6.1 SPM, XPM Effects
78(2)
2.6.2 SPM and Modulation Instability
80(1)
2.6.3 Effects of Mode Hopping
81(1)
2.6.4 SPM and Intra-Channel Nonlinear Effects
81(5)
2.6.5 Nonlinear Phase Noises
86(1)
2.7 Special Dispersion Optical Fibers
87(1)
2.8 SMF Transfer Function: Simplified Linear and Nonlinear Operating Region
88(7)
2.9 Numerical Solution: Split-Step Fourier Method
95(4)
2.9.1 Symmetrical Split-Step Fourier Method
95(2)
2.9.1.1 Modeling of Polarization Mode Dispersion
97(1)
2.9.1.2 Optimization of Symmetrical SSFM
98(1)
2.10 Nonlinear Fiber Transfer Functions and Compensations in Digital Signal Processing
99(15)
2.10.1 Cascades of Linear and Nonlinear Transfer Functions in Time and Frequency Domains
101(2)
2.10.2 Volterra Nonlinear Transfer Function and Electronic Compensation
103(1)
2.10.3 Inverse of Volterra Expansion and Nonlinearity Compensation in Electronic Domain
104(2)
2.10.3.1 Inverse of Volterra Transfer Function
106(2)
2.10.3.2 Electronic Compensation Structure
108(3)
2.10.3.3 Remarks
111(1)
2.10.4 Back-Propagation Techniques for Compensation of Nonlinear Distortion
111(3)
2.11 Concluding Remarks
114(7)
References
115(6)
3 External Modulators for Coherent Transmission and Reception
121(58)
3.1 Introduction
121(1)
3.2 External Modulation and Advanced Modulation Formats
122(18)
3.2.1 Electro-Absorption Modulators
122(2)
3.2.2 Electro-Optic Modulators
124(1)
3.2.2.1 Phase Modulators
125(1)
3.2.2.2 Intensity Modulators
125(2)
3.2.2.3 Phasor Representation and Transfer Characteristics
127(1)
3.2.2.4 Bias Control
128(1)
3.2.2.5 Chirp-Free Optical Modulators
129(1)
3.2.2.6 Structures of Photonic Modulators
130(1)
3.2.2.7 Typical Operational Parameters
131(1)
3.2.3 ASK Modulation Formats and Pulse Shaping
131(1)
3.2.3.1 Return-to-Zero Optical Pulses
131(3)
3.2.3.2 Phasor Representation
134(1)
3.2.3.3 Phasor Representation of CSRZ Pulses
135(1)
3.2.3.4 Phasor Representation of RZ33 Pulses
136(1)
3.2.4 Differential Phase Shift Keying
137(1)
3.2.4.1 Background
137(1)
3.2.4.2 Optical DPSK Transmitter
138(2)
3.3 Generation of Modulation Formats
140(11)
3.3.1 Amplitude Modulation ASK-NRZ and ASK-RZ
140(1)
3.3.2 Amplitude Modulation Carrier-Suppressed RZ Formats
141(1)
3.3.3 Discrete Phase Modulation NRZ Formats
141(1)
3.3.3.1 Differential Phase Shift Keying
141(2)
3.3.3.2 Differential Quadrature Phase Shift Keying
143(1)
3.3.3.3 Non Return-to-Zero Differential Phase Shift Keying
143(1)
3.3.3.4 Return-to-Zero Differential Phase Shift Keying
143(1)
3.3.3.5 Generation of M-Ary Amplitude Differential Phase Shift Keying (M-Ary ADPSK) Using One MZIM
144(2)
3.3.3.6 Continuous Phase Modulation PM-NRZ Formats
146(1)
3.3.3.7 Linear and Nonlinear MSK
147(4)
3.4 Photonic MSK Transmitter Using Two Cascaded Electro-Optic Phase Modulators
151(13)
3.4.1 Configuration of Optical MSK Transmitter Using Mach--Zehnder Intensity Modulators: I--Q Approach
153(2)
3.4.2 Single-Side Band Optical Modulators
155(1)
3.4.3 Optical RZ-MSK
156(1)
3.4.4 Multi-Carrier Multiplexing Optical Modulators
156(3)
3.4.5 Spectra of Modulation Formats
159(5)
3.5 I--Q Integrated Modulators
164(4)
3.5.1 Inphase and Quadrature Phase Optical Modulators
164(3)
3.5.2 IQ Modulator and Electronic Digital Multiplexing for Ultra-High Bit Rates
167(1)
3.6 DAC for DSP-Based Modulation and Transmitter
168(5)
3.6.1 Fujitsu DAC
168(2)
3.6.2 Structure
170(1)
3.6.2.1 Generation of I and Q Components
171(2)
3.7 Remarks
173(6)
References
176(3)
4 Optical Coherent Detection and Processing Systems
179(76)
4.1 Introduction
179(2)
4.2 Coherent Receiver Components
181(1)
4.3 Coherent Detection
182(19)
4.3.1 Optical Heterodyne Detection
185(2)
4.3.1.1 ASK Coherent System
187(2)
4.3.1.2 PSK Coherent System
189(1)
4.3.1.3 Differential Detection
190(1)
4.3.1.4 FSK Coherent System
191(1)
4.3.2 Optical Homodyne Detection
192(1)
4.3.2.1 Detection and OPLL
193(1)
4.3.2.2 Quantum Limit Detection
194(1)
4.3.2.3 Linewidth Influences
195(5)
4.3.3 Optical Intradyne Detection
200(1)
4.4 Self-Coherent Detection and Electronic DSP
201(2)
4.5 Electronic Amplifiers: Responses and Noises
203(5)
4.5.1 Introduction
203(2)
4.5.2 Wideband TIAs
205(1)
4.5.2.1 Single Input/Single Output
205(1)
4.5.2.2 Differential Inputs, Single/Differential Output
205(1)
4.5.3 Amplifier Noise Referred to Input
206(2)
4.6 Digital Signal Processing Systems and Coherent Optical Reception
208(20)
4.6.1 DSP-Assisted Coherent Detection
208(1)
4.6.1.1 DSP-Based Reception Systems
209(2)
4.6.2 Coherent Reception Analysis
211(1)
4.6.2.1 Sensitivity
211(4)
4.6.2.2 Shot-Noise-Limited Receiver Sensitivity
215(1)
4.6.2.3 Receiver Sensitivity under Nonideal Conditions
216(1)
4.6.3 Digital Processing Systems
217(1)
4.6.3.1 Effective Number of Bits
218(8)
4.6.3.2 Impact of ENOB on Transmission Performance
226(2)
4.6.3.3 Digital Processors
228(1)
4.7 Concluding Remarks
228(3)
4.8 Appendix: A Coherent Balanced Receiver and Method for Noise Suppression
231(24)
4.8.1 Analytical Noise Expressions
233(2)
4.8.2 Noise Generators
235(1)
4.8.3 Equivalent Input Noise Current
236(2)
4.8.4 Pole-Zero Pattern and Dynamics
238(4)
4.8.5 Responses and Noise Measurements
242(1)
4.8.5.1 Rise-Time and 3 dB Bandwidth
242(2)
4.8.5.2 Noise Measurement and Suppression
244(1)
4.8.5.3 Requirement for Quantum Limit
245(1)
4.8.5.4 Excess Noise Cancellation Technique
246(1)
4.8.5.5 Excess Noise Measurement
247(1)
4.8.6 Remarks
248(1)
4.8.7 Noise Equations
249(3)
References
252(3)
5 Optical Phase Locking
255(46)
5.1 Overview of Optical Phase Lock Loop
255(3)
5.2 Optical Coherent Detection and Optical PLL
258(16)
5.2.1 General PLL Theory
258(1)
5.2.1.1 Phase Detector
259(1)
5.2.1.2 Loop Filter
260(1)
5.2.1.3 Voltage-Controlled Oscillator
261(1)
5.2.1.4 A Second-Order PLL
261(2)
5.2.2 PLL
263(2)
5.2.3 OPLL
265(1)
5.2.3.1 Functional Requirements
265(1)
5.2.3.2 Nonfunctional Requirements
265(1)
5.2.4 Digital LPF Design
266(1)
5.2.4.1 Fixed-Point Arithmetic
266(2)
5.2.4.2 Digital Filter
268(2)
5.2.4.3 Interface Board
270(2)
5.2.4.4 FPGA Implementation
272(1)
5.2.4.5 Indication of Locking State
272(1)
5.2.4.6 OPLL Hardware Details
273(1)
5.3 Performances: Simulation and Experiments
274(22)
5.3.1 Simulation
274(1)
5.3.2 Experiment: Digital Feedback Control
275(3)
5.3.2.1 Noise Sources
278(1)
5.3.2.2 Quality of Locking State
278(2)
5.3.2.3 Limitations
280(1)
5.3.3 Simulation and Experiment Test Bed: Analog Feedback Control
281(1)
5.3.3.1 Simulation: Analog Feedback Control Loop
281(7)
5.3.3.2 Laser Beating Experiments
288(1)
5.3.3.3 Loop Filter Design
289(1)
5.3.3.4 Closed-Loop Locking of LO and Signal Carrier: Closed-Loop OPLL
290(1)
5.3.3.5 Monitoring of Beat Signals
291(2)
5.3.3.6 High-Resolution Optical Spectrum Analysis
293(1)
5.3.3.7 Phase Error and LPF Time Constant
293(2)
5.3.3.8 Remarks
295(1)
5.4 OPLL for Superchannel Coherent Receiver
296(2)
5.5 Concluding Remarks
298(3)
References
299(2)
6 Digital Signal Processing Algorithms and Systems Performance
301(68)
6.1 Introduction
301(3)
6.2 General Algorithms for Optical Communications Systems
304(20)
6.2.1 Linear Equalization
305(1)
6.2.1.1 Basic Assumptions
306(1)
6.2.1.2 Zero-Forcing Linear Equalization (ZF-LE)
307(1)
6.2.1.3 ZF-LE for Fiber as a Transmission Channel
308(2)
6.2.1.4 Feedback Transversal Filter
310(1)
6.2.1.5 Tolerance of Additive Gaussian Noises
310(2)
6.2.1.6 Equalization with Minimizing MSE in Equalized Signals
312(2)
6.2.1.7 Constant Modulus Algorithm for Blind Equalization and Carrier Phase Recovery
314(5)
6.2.2 Nonlinear Equalizer or DFEs
319(1)
6.2.2.1 DD Cancellation of ISI
319(2)
6.2.2.2 Zero-Forcing Nonlinear Equalization
321(2)
6.2.2.3 Linear and Nonlinear Equalization of a Factorized Channel Response
323(1)
6.2.2.4 Equalization with Minimizing MSE in Equalized Signals
324(1)
6.3 MLSD and Viterbi
324(9)
6.3.1 Nonlinear MLSE
325(1)
6.3.2 Trellis Structure and Viterbi Algorithm
326(1)
6.3.2.1 Trellis Structure
326(1)
6.3.2.2 Viterbi Algorithm
327(1)
6.3.3 Optical Fiber as a Finite State Machine
328(1)
6.3.4 Construction of State Trellis Structure
328(1)
6.3.5 Shared Equalization between Transmitter and Receivers
329(1)
6.3.5.1 Equalizers at the Transmitter
329(3)
6.3.5.2 Shared Equalization
332(1)
6.4 Maximum a Posteriori Technique for Phase Estimation
333(6)
6.4.1 Method
333(1)
6.4.2 Estimates
334(5)
6.5 Carrier Phase Estimation
339(9)
6.5.1 Remarks
339(1)
6.5.2 Correction of Phase Noise and Nonlinear Effects
340(1)
6.5.3 Forward Phase Estimation QPSK Optical Coherent Receivers
341(1)
6.5.4 CR in Polarization Division Multiplexed Receivers: A Case Study
342(1)
6.5.4.1 FO Oscillations and Q-Penalties
343(2)
6.5.4.2 Algorithm and Demonstration of Carrier Phase Recovery
345(3)
6.6 Systems Performance of MLSE Equalizer--MSK Optical Transmission Systems
348(21)
6.6.1 MLSE Equalizer for Optical MSK Systems
348(1)
6.6.1.1 Configuration of MLSE Equalizer in Optical Frequency Discrimination Receiver
348(1)
6.6.1.2 MLSE Equalizer with Viterbi Algorithm
349(2)
6.6.1.3 MLSE Equalizer with Reduced-State Template Matching
351(1)
6.6.2 MLSE Scheme Performance
351(1)
6.6.2.1 Performance of MLSE Schemes in 40 Gb/s Transmission Systems
351(1)
6.6.2.2 Transmission of 10 Gb/s Optical MSK Signals over 1472 km SSMF Uncompensated Optical Link
352(3)
6.6.2.3 Performance Limits of Viterbi--MLSE Equalizers
355(4)
6.6.2.4 Viterbi--MLSE Equalizers for PMD Mitigation
359(5)
6.6.2.5 On the Uncertainty and Transmission Limitation of Equalization Process
364(1)
References
365(4)
7 DSP-Based Coherent Optical Transmission Systems
369(40)
7.1 Introduction
369(2)
7.2 QPSK Systems
371(10)
7.2.1 Carrier Phase Recovery
371(1)
7.2.2 112 G QPSK Coherent Transmission Systems
371(3)
7.2.3 I--Q Imbalance Estimation Results
374(1)
7.2.4 Skew Estimation
375(2)
7.2.5 Fractionally Spaced Equalization of CD and PMD
377(1)
7.2.6 Linear and Nonlinear Equalization and Back-Propagation Compensation of Linear and Nonlinear Phase Distortion
377(4)
7.3 16 QAM Systems
381(4)
7.4 Tera-Bits/s Superchannel Transmission Systems
385(21)
7.4.1 Overview
385(1)
7.4.2 Nyquist Pulse and Spectra
386(2)
7.4.3 Superchannel System Requirements
388(1)
7.4.4 System Structure
389(1)
7.4.4.1 DSP-Based Coherent Receiver
389(5)
7.4.4.2 Optical Fourier Transform-Based Structure
394(1)
7.4.4.3 Processing
395(3)
7.4.5 Timing Recovery in Nyquist QAM Channel
398(1)
7.4.6 128 Gb/s 16 QAM Superchannel Transmission
399(2)
7.4.7 450 Gb/s 32 QAM Nyquist Transmission Systems
401(2)
7.4.8 DSP-Based Heterodyne Coherent Reception Systems
403(3)
7.5 Concluding Remarks
406(3)
References
407(2)
8 Higher-Order Spectrum Coherent Receivers
409(50)
8.1 Bispectrum Optical Receivers and Nonlinear Photonic Pre-processing
409(10)
8.1.1 Introductory Remarks
409(2)
8.1.2 Bispectrum
411(1)
8.1.3 Bispectrum Coherent Optical Receiver
412(1)
8.1.4 Triple Correlation and Bispectra
412(1)
8.1.4.1 Definition
412(1)
8.1.4.2 Gaussian Noise Rejection
413(1)
8.1.4.3 Encoding of Phase Information
413(1)
8.1.4.4 Eliminating Gaussian Noise
413(1)
8.1.5 Transmission and Detection
414(1)
8.1.5.1 Optical Transmission Route and Simulation Platform
414(1)
8.1.5.2 Four-Wave Mixing and Bispectrum Receiving
415(1)
8.1.5.3 Performance
415(4)
8.2 NL Photonic Signal Processing Using Higher-Order Spectra
419(40)
8.2.1 Introductory Remarks
419(1)
8.2.2 FWM and Photonic Processing
420(1)
8.2.2.1 Bispectral Optical Structures
420(2)
8.2.2.2 The Phenomena of FWM
422(2)
8.2.3 Third-Order Nonlinearity and Parametric FWM Process
424(1)
8.2.3.1 NL Wave Equation
424(1)
8.2.3.2 FWM Coupled-Wave Equations
425(2)
8.2.3.3 Phase Matching
427(1)
8.2.3.4 Coupled Equations and Conversion Efficiency
427(1)
8.2.4 Optical Domain Implementation
428(1)
8.2.4.1 NL Wave Guide
428(1)
8.2.4.2 Third-Harmonic Conversion
429(1)
8.2.4.3 Conservation of Momentum
429(1)
8.2.4.4 Estimate of Optical Power Required for FWM
429(1)
8.2.5 Transmission Models and NL Guided Wave Devices
430(1)
8.2.6 System Applications of Third-Order Parametric Nonlinearity in Optical Signal Processing
431(1)
8.2.6.1 Parametric Amplifiers
431(5)
8.2.6.2 Wavelength Conversion and NL Phase Conjugation
436(1)
8.2.6.3 High-Speed Optical Switching
437(5)
8.2.6.4 Triple Correlation
442(6)
8.2.6.5 Remarks
448(1)
8.2.7 NL Photonic Pre-Processing in Coherent Reception Systems
449(6)
8.2.8 Remarks
455(1)
References
456(3)
Index 459
Le Nguyen Binh