Preface |
|
xv | |
Acknowledgments |
|
xix | |
|
|
1 | (9) |
|
1.1 The importance of compression |
|
|
1 | (1) |
|
|
2 | (2) |
|
1.2.1 Symbolic information |
|
|
2 | (1) |
|
1.2.2 Numerical information |
|
|
3 | (1) |
|
1.3 Basic compression process |
|
|
4 | (1) |
|
1.4 Compression applications |
|
|
5 | (1) |
|
1.5 Design of compression methods |
|
|
6 | (2) |
|
1.6 Multi-disciplinary aspect |
|
|
8 | (2) |
|
|
8 | (1) |
|
|
9 | (1) |
|
|
10 | (13) |
|
2.1 Entropy and lossless coding |
|
|
10 | (1) |
|
|
11 | (1) |
|
2.3 Source transformations |
|
|
12 | (4) |
|
|
12 | (1) |
|
|
13 | (3) |
|
|
16 | (1) |
|
|
17 | (3) |
|
2.5.1 Performance criteria |
|
|
17 | (1) |
|
2.5.2 Transform coding systems |
|
|
18 | (1) |
|
2.5.3 Subband coding systems |
|
|
19 | (1) |
|
2.6 Distributed source coding |
|
|
20 | (3) |
|
|
21 | (1) |
|
|
22 | (1) |
|
3 Principles of lossless compression |
|
|
23 | (18) |
|
|
23 | (1) |
|
3.2 Lossless source coding and entropy |
|
|
23 | (5) |
|
3.3 Variable length codes |
|
|
28 | (4) |
|
3.3.1 Unique decodability and prefix-free codes |
|
|
28 | (1) |
|
3.3.2 Construction of prefix-free codes |
|
|
28 | (2) |
|
|
30 | (2) |
|
3.4 Opfimalily of prefix-free codes |
|
|
32 | (5) |
|
3.4.1 Sources with memory |
|
|
36 | (1) |
|
|
37 | (4) |
|
|
37 | (3) |
|
|
40 | (1) |
|
4 Entropy coding techniques |
|
|
41 | (36) |
|
|
41 | (1) |
|
|
41 | (6) |
|
4.3 Shannon-Fano-Elias codes |
|
|
47 | (3) |
|
|
48 | (1) |
|
4.3.2 Decoding the SFE code |
|
|
49 | (1) |
|
|
50 | (5) |
|
|
50 | (1) |
|
4.4.2 Arithmetic encoding |
|
|
51 | (2) |
|
4.4.3 Arithmetic decoding |
|
|
53 | (2) |
|
|
55 | (2) |
|
4.6 Alphabet partitioning: modified Huffman codes |
|
|
57 | (3) |
|
4.6.1 Modified Huffman codes |
|
|
57 | (1) |
|
4.6.2 Alphabet partitioning |
|
|
58 | (2) |
|
|
60 | (3) |
|
|
63 | (9) |
|
|
64 | (1) |
|
|
65 | (2) |
|
4.8.3 The LZ77 coding method |
|
|
67 | (5) |
|
|
72 | (5) |
|
|
72 | (3) |
|
|
75 | (1) |
|
|
76 | (1) |
|
5 Lossy compression of scalar sources |
|
|
77 | (39) |
|
|
77 | (1) |
|
|
77 | (10) |
|
5.2.1 Scalar quantization |
|
|
77 | (4) |
|
5.2.2 Uniform quantization |
|
|
81 | (6) |
|
5.3 Non-uniform quantization |
|
|
87 | (4) |
|
5.3.1 High rate approximations |
|
|
89 | (2) |
|
|
91 | (4) |
|
5.4.1 Distortion at high rates |
|
|
93 | (2) |
|
5.5 Entropy coding of quantizer outputs |
|
|
95 | (6) |
|
5.5.1 Entropy coded quantizer characteristics |
|
|
98 | (1) |
|
5.5.2 Null-zone quantization |
|
|
99 | (2) |
|
5.6 Bounds on optimal performance |
|
|
101 | (6) |
|
5.6.1 Rate-distortion theory |
|
|
102 | (2) |
|
5.6.2 The Gish-Pierce bound |
|
|
104 | (3) |
|
|
107 | (1) |
|
5.8 Appendix: quantization tables |
|
|
107 | (9) |
|
|
109 | (4) |
|
|
113 | (1) |
|
|
114 | (2) |
|
6 Coding of sources with memory |
|
|
116 | (50) |
|
|
116 | (1) |
|
|
116 | (6) |
|
6.2.1 Optimal linear prediction |
|
|
117 | (3) |
|
6.2.2 DPCM system description |
|
|
120 | (1) |
|
6.2.3 DPCM coding error and gain |
|
|
121 | (1) |
|
|
122 | (19) |
|
6.3.1 Optimal performance bounds |
|
|
122 | (7) |
|
6.3.2 Vector (block) quantization (VQ) |
|
|
129 | (6) |
|
6.3.3 Entropy constrained vector quantization |
|
|
135 | (6) |
|
6.4 Tree-structured vector quantization |
|
|
141 | (5) |
|
6.4.1 Variable length TSVQ coding |
|
|
144 | (1) |
|
|
145 | (1) |
|
6.5 Tree and trellis codes |
|
|
146 | (6) |
|
|
148 | (2) |
|
6.5.2 Encoding and decoding of trellis codes |
|
|
150 | (2) |
|
6.5.3 Codevector alphabets |
|
|
152 | (1) |
|
6.6 Trellis coded quantization (TCQ) |
|
|
152 | (3) |
|
|
154 | (1) |
|
6.6.2 Improving low-rate performance in TCQ |
|
|
155 | (1) |
|
|
155 | (5) |
|
|
155 | (3) |
|
6.7.2 The Viterbi algorithm |
|
|
158 | (2) |
|
|
160 | (6) |
|
|
160 | (3) |
|
|
163 | (1) |
|
|
164 | (2) |
|
7 Mathematical transformations |
|
|
166 | (52) |
|
|
166 | (5) |
|
7.1.1 Transform coding gain |
|
|
169 | (2) |
|
7.2 The optimal Karhunen-Loeve transform |
|
|
171 | (1) |
|
7.2.1 Optimal transform coding gain |
|
|
172 | (1) |
|
7.3 Suboptimal transforms |
|
|
172 | (3) |
|
7.3.1 The discrete Fourier transform |
|
|
172 | (1) |
|
7.3.2 The discrete cosine transform |
|
|
173 | (1) |
|
7.3.3 The Hadamard-Walsh transform |
|
|
174 | (1) |
|
7.4 Lapped orthogonal transform |
|
|
175 | (4) |
|
7.4.1 Example of calculation of transform coding gain |
|
|
178 | (1) |
|
7.5 Transforms via filter banks |
|
|
179 | (2) |
|
7.6 Two-dimensional transforms for images |
|
|
181 | (3) |
|
|
184 | (27) |
|
|
184 | (3) |
|
7.7.2 Coding gain of subband transformation |
|
|
187 | (5) |
|
7.7.3 Realizable perfect reconstruction filters |
|
|
192 | (2) |
|
7.7.4 Orthogonal wavelet transform |
|
|
194 | (5) |
|
7.7.5 Biorthogonal wavelet transform |
|
|
199 | (5) |
|
7.7.6 Useful biorthogonal filters |
|
|
204 | (1) |
|
|
205 | (3) |
|
7.7.8 Transforms with integer output |
|
|
208 | (3) |
|
|
211 | (7) |
|
|
212 | (2) |
|
|
214 | (2) |
|
|
216 | (2) |
|
8 Rate control in transform coding systems |
|
|
218 | (27) |
|
|
218 | (15) |
|
8.1.1 Optimal rate allocation for known quantizer characteristics |
|
|
220 | (3) |
|
8.1.2 Realizing the optimal rate allocation |
|
|
223 | (2) |
|
8.1.3 Fixed level quantization |
|
|
225 | (1) |
|
8.1.4 Optimal bit allocation for arbitrary set of quantizers |
|
|
226 | (2) |
|
8.1.5 Building up to optimal rates for arbitrary quantizers |
|
|
228 | (2) |
|
8.1.6 Transform coding gain |
|
|
230 | (3) |
|
8.2 Subband rate allocation |
|
|
233 | (8) |
|
|
237 | (2) |
|
8.2.2 Subband coding gain |
|
|
239 | (2) |
|
8.3 Algorithms for rate allocation to subbands |
|
|
241 | (1) |
|
|
242 | (3) |
|
|
242 | (1) |
|
|
243 | (1) |
|
|
244 | (1) |
|
9 Transform coding systems |
|
|
245 | (20) |
|
|
245 | (1) |
|
9.2 Application of source transformations |
|
|
245 | (6) |
|
9.2.1 Model-based image transform coding |
|
|
246 | (3) |
|
9.2.2 Encoding transform coefficients |
|
|
249 | (2) |
|
|
251 | (8) |
|
9.3.1 The JPEG baseline system |
|
|
252 | (4) |
|
9.3.2 Detailed example of JPEG standard method |
|
|
256 | (3) |
|
9.4 Advanced image transform coding: H.264/AVC intra coding |
|
|
259 | (3) |
|
|
262 | (3) |
|
|
262 | (1) |
|
|
263 | (1) |
|
|
264 | (1) |
|
|
265 | (48) |
|
|
265 | (11) |
|
10.1.1 Partitioning data according to value |
|
|
267 | (3) |
|
10.1.2 Forming partitions recursively: square blocks |
|
|
270 | (4) |
|
|
274 | (2) |
|
10.1.4 One-dimensional signals |
|
|
276 | (1) |
|
10.2 Tree-structured sets |
|
|
276 | (9) |
|
10.2.1 A different wavelet transform partition |
|
|
279 | (3) |
|
10.2.2 Data-dependent thresholds |
|
|
282 | (1) |
|
10.2.3 Adaptive partitions |
|
|
283 | (2) |
|
10.3 Progressive transmission and bitplane coding |
|
|
285 | (1) |
|
10.4 Applications to image transform coding |
|
|
286 | (20) |
|
10.4.1 Block partition coding and amplitude and group partitioning (AGP) |
|
|
287 | (2) |
|
10.4.2 Enhancements via entropy coding |
|
|
289 | (1) |
|
10.4.3 Traversing the blocks |
|
|
289 | (2) |
|
10.4.4 Embedded block coding of image wavelet transforms |
|
|
291 | (1) |
|
10.4.5 A SPECK coding example |
|
|
291 | (6) |
|
10.4.6 Embedded tree-based image wavelet transform coding |
|
|
297 | (2) |
|
10.4.7 A SPIHT coding example |
|
|
299 | (3) |
|
10.4.8 Embedded zerotree wavelet (EZW) coding |
|
|
302 | (4) |
|
10.4.9 Group testing for image wavelet coding |
|
|
306 | (1) |
|
|
306 | (7) |
|
|
307 | (3) |
|
|
310 | (1) |
|
|
311 | (2) |
|
11 Subband/wavelet coding systems |
|
|
313 | (48) |
|
11.1 Wavelet transform coding systems |
|
|
313 | (4) |
|
11.2 Generic wavelet-based coding systems |
|
|
317 | (1) |
|
11.3 Compression methods in wavelet-based systems |
|
|
318 | (2) |
|
11.4 Block-based wavelet transform set partition coding |
|
|
320 | (27) |
|
11.4.1 Progressive resolution coding |
|
|
321 | (2) |
|
11.4.2 Quality-progressive coding |
|
|
323 | (3) |
|
11.4.3 Octave band partitioning |
|
|
326 | (2) |
|
11.4.4 Direct bit-embedded coding methods |
|
|
328 | (1) |
|
11.4.5 Lossless coding of quantizer levels with adaptive thresholds |
|
|
329 | (2) |
|
|
331 | (1) |
|
11.4.7 Coding of subband subblocks |
|
|
332 | (1) |
|
11.4.8 Coding the initial thresholds |
|
|
333 | (2) |
|
|
335 | (1) |
|
|
336 | (7) |
|
11.4.11 The embedded zero-block coder (EZBC) |
|
|
343 | (4) |
|
11.5 Tree-based wavelet transform coding systems |
|
|
347 | (7) |
|
11.5.1 Fully scalable SPIHT |
|
|
347 | (2) |
|
11.5.2 Resolution scalable SPIHT |
|
|
349 | (3) |
|
11.5.3 Block-oriented SPIHT coding |
|
|
352 | (2) |
|
11.6 Rate control for embedded block coders |
|
|
354 | (2) |
|
|
356 | (5) |
|
|
357 | (2) |
|
|
359 | (2) |
|
12 Methods for lossless compression of images |
|
|
361 | (12) |
|
|
361 | (1) |
|
12.2 Lossless predictive coding |
|
|
362 | (2) |
|
12.2.1 Old JPEG standard for lossless image compression |
|
|
362 | (2) |
|
12.3 State-of-the-art lossless image coding and JPEG-LS |
|
|
364 | (4) |
|
|
364 | (1) |
|
|
365 | (1) |
|
12.3.3 Golomb-Rice coding |
|
|
366 | (1) |
|
|
366 | (1) |
|
|
367 | (1) |
|
12.3.6 Near-lossless mode |
|
|
368 | (1) |
|
|
368 | (1) |
|
12.4 Multi-resolution methods |
|
|
368 | (1) |
|
|
369 | (4) |
|
|
370 | (1) |
|
|
371 | (1) |
|
|
372 | (1) |
|
13 Color and multi-component image and video coding |
|
|
373 | (25) |
|
|
373 | (1) |
|
13.2 Color image representation |
|
|
374 | (4) |
|
13.2.1 Chrominance subsampling |
|
|
376 | (1) |
|
13.2.2 Principal component space |
|
|
377 | (1) |
|
|
378 | (5) |
|
13.3.1 Transform coding and JPEG |
|
|
378 | (2) |
|
13.3.2 Wavelet transform systems |
|
|
380 | (3) |
|
13.4 Multi-component image coding |
|
|
383 | (12) |
|
|
383 | (1) |
|
13.4.2 Three-dimensional wavelet transform coding |
|
|
384 | (5) |
|
|
389 | (6) |
|
|
395 | (3) |
|
|
395 | (1) |
|
|
396 | (2) |
|
14 Distributed source coding |
|
|
398 | (16) |
|
14.1 Slepian-Wolf coding for lossless compression |
|
|
398 | (6) |
|
14.1.1 Practical Slepian-Wolf coding |
|
|
400 | (4) |
|
14.2 Wyner-Ziv coding for lossy compression |
|
|
404 | (7) |
|
14.2.1 Scalar Wyner-Ziv coding |
|
|
406 | (1) |
|
14.2.2 Probability of successful reconstruction |
|
|
407 | (4) |
|
|
411 | (3) |
|
|
411 | (1) |
|
|
412 | (1) |
|
|
413 | (1) |
Index |
|
414 | |