Muutke küpsiste eelistusi

E-raamat: Digital Signal and Image Processing using MATLAB, Volume 3: Advances and Applications, The Stochastic Case

, (Ecole Nationale Supérieure des Télécommunications, Paris, France)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 02-Oct-2015
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119054092
  • Formaat - PDF+DRM
  • Hind: 171,60 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 02-Oct-2015
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119054092

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Volume 3 of the second edition of the fully revised and updated Digital Signal and Image Processing using MATLAB®, after first two volumes on the “Fundamentals” and “Advances and Applications: The Deterministic Case”, focuses on the stochastic case. It will be of particular benefit to readers who already possess a good knowledge of MATLAB®, a command of the fundamental elements of digital signal processing and who are familiar with both the fundamentals of continuous-spectrum spectral analysis and who have a certain mathematical knowledge concerning Hilbert spaces.

This volume is focused on applications, but it also provides a good presentation of the principles. A number of elements closer in nature to statistics than to signal processing itself are widely discussed. This choice comes from a current tendency of signal processing to use techniques from this field.

More than 200 programs and functions are provided in the MATLAB® language, with useful comments and guidance, to enable numerical experiments to be carried out, thus allowing readers to develop a deeper understanding of both the theoretical and practical aspects of this subject.

Foreword ix
Notations and Abbreviations xiii
1 Mathematical Concepts
1(24)
1.1 Basic concepts on probability
1(8)
1.2 Conditional expectation
9(1)
1.3 Projection theorem
10(3)
1.4 Gaussianity
13(5)
1.5 Random variable transformation
18(3)
1.5.1 Change of variable formula
18(1)
1.5.2 δ-method
19(2)
1.6 Fundamental statistical theorems
21(2)
1.7 Other important probability distributions
23(2)
2 Statistical Inferences
25(60)
2.1 Statistical model
25(2)
2.2 Hypothesis tests
27(14)
2.2.1 Simple hypotheses
28(5)
2.2.2 Generalized Likelihood Ratio Test (GLRT)
33(6)
2.2.3 Χ2 goodness of fit test
39(2)
2.3 Statistical estimation
41(44)
2.3.1 General principles
41(2)
2.3.2 Least squares method
43(1)
2.3.3 Least squares method: linear model
44(12)
2.3.4 Method of moments
56(3)
2.3.5 Maximum likelihood
59(16)
2.3.6 Estimating a distribution
75(4)
2.3.7 Bootstrap and others
79(6)
3 Monte-Carlo Simulation
85(22)
3.1 Fundamental theorems
85(1)
3.2 Stating the problem
86(2)
3.3 Generating random variables
88(11)
3.3.1 The cumulative function inversion method
89(2)
3.3.2 The variable transformation method
91(2)
3.3.3 Acceptance-rejection method
93(2)
3.3.4 Sequential methods
95(4)
3.4 Variance reduction
99(8)
3.4.1 Importance sampling
99(4)
3.4.2 Stratification
103(3)
3.4.3 Antithetic variates
106(1)
4 Second Order Stationary Process
107(32)
4.1 Statistics for empirical correlation
107(4)
4.2 Linear prediction of WSS processes
111(13)
4.2.1 Yule-Walker equations
111(4)
4.2.2 Levinson-Durbin algorithm
115(5)
4.2.3 Reflection coefficients and lattice filters
120(4)
4.3 Non-parametric spectral estimation of WSS processes
124(15)
4.3.1 Correlogram
125(1)
4.3.2 Periodogram
125(3)
4.3.3 Smoothed periodograms
128(7)
4.3.4 Coherence
135(4)
5 Inferences on HMM
139(24)
5.1 Hidden Markov Models (HMM)
139(3)
5.2 Inferences on HMM
142(1)
5.3 Gaussian linear case: the Kalman filter
143(9)
5.4 Discrete finite Markov case
152(11)
5.4.1 Forward-backward formulas
153(2)
5.4.2 Smoothing with one instant
155(1)
5.4.3 Smoothing with two instants
156(1)
5.4.4 HMM learning using the EM algorithm
156(2)
5.4.5 The Viterbi algorithm
158(5)
6 Selected Topics
163(72)
6.1 High resolution methods
163(23)
6.1.1 Estimating the fundamental of periodic signals: MUSIC
163(14)
6.1.2 Introduction to array processing: MUSIC, ESPRIT
177(9)
6.2 Digital Communications
186(25)
6.2.1 Introduction
186(3)
6.2.2 8-phase shift keying (PSK)
189(2)
6.2.3 PAM modulation
191(2)
6.2.4 Spectrum of a digital signal
193(5)
6.2.5 The Nyquist criterion in digital communications
198(6)
6.2.6 The eye pattern
204(1)
6.2.7 PAM modulation on the Nyquist channel
205(6)
6.3 Linear equalization and the Viterbi algorithm
211(9)
6.3.1 Linear equalization
213(2)
6.3.2 The soft decoding Viterbi algorithm
215(5)
6.4 Compression
220(15)
6.4.1 Scalar Quantization
220(2)
6.4.2 Vector Quantization
222(13)
7 Hints and Solutions
235(82)
H1 Mathematical concepts
235(2)
H2 Statistical inferences
237(32)
H3 Monte-Carlo simulation
269(8)
H4 Second order stationary process
277(6)
H5 Inferences on HMM
283(17)
7.6 Selected Topics
300(17)
8 Appendices
317(12)
A1 Miscellaneous functions
317(1)
A2 Statistical functions
318(11)
A.2.1 Notable functions
318(1)
A.2.2 Beta distribution
318(1)
A.2.3 Student's distribution
318(5)
A.2.4 Chi-squared distribution
323(3)
A.2.5 Fisher's distribution
326(3)
Bibliography 329(4)
Index 333
Gérard Blanchet is Professor at Telecom ParisTech, France. In addition to his research, teaching and consulting activities, he is the author of several books on automatic control systems, digital signal processing and computer architecture. He also develops tools and methodologies to improve knowledge acquisition in various fields.

Maurice Charbit is Professor at Telecom ParisTech, France. He is a teacher in probability theory, signal processing, communication theory and statistics for data processing. With regard to research, his main areas of interest are: (i) the Bayesian approach for hidden Markov models, (ii) the 3D model-based approach for face tracking, and (iii) processing for multiple sensor arrays with applications to infrasonic systems.