Foreword |
|
ix | |
Notations and Abbreviations |
|
xiii | |
|
|
1 | (24) |
|
1.1 Basic concepts on probability |
|
|
1 | (8) |
|
1.2 Conditional expectation |
|
|
9 | (1) |
|
|
10 | (3) |
|
|
13 | (5) |
|
1.5 Random variable transformation |
|
|
18 | (3) |
|
1.5.1 Change of variable formula |
|
|
18 | (1) |
|
|
19 | (2) |
|
1.6 Fundamental statistical theorems |
|
|
21 | (2) |
|
1.7 Other important probability distributions |
|
|
23 | (2) |
|
|
25 | (60) |
|
|
25 | (2) |
|
|
27 | (14) |
|
|
28 | (5) |
|
2.2.2 Generalized Likelihood Ratio Test (GLRT) |
|
|
33 | (6) |
|
2.2.3 Χ2 goodness of fit test |
|
|
39 | (2) |
|
2.3 Statistical estimation |
|
|
41 | (44) |
|
|
41 | (2) |
|
2.3.2 Least squares method |
|
|
43 | (1) |
|
2.3.3 Least squares method: linear model |
|
|
44 | (12) |
|
|
56 | (3) |
|
|
59 | (16) |
|
2.3.6 Estimating a distribution |
|
|
75 | (4) |
|
2.3.7 Bootstrap and others |
|
|
79 | (6) |
|
|
85 | (22) |
|
|
85 | (1) |
|
|
86 | (2) |
|
3.3 Generating random variables |
|
|
88 | (11) |
|
3.3.1 The cumulative function inversion method |
|
|
89 | (2) |
|
3.3.2 The variable transformation method |
|
|
91 | (2) |
|
3.3.3 Acceptance-rejection method |
|
|
93 | (2) |
|
|
95 | (4) |
|
|
99 | (8) |
|
3.4.1 Importance sampling |
|
|
99 | (4) |
|
|
103 | (3) |
|
3.4.3 Antithetic variates |
|
|
106 | (1) |
|
4 Second Order Stationary Process |
|
|
107 | (32) |
|
4.1 Statistics for empirical correlation |
|
|
107 | (4) |
|
4.2 Linear prediction of WSS processes |
|
|
111 | (13) |
|
4.2.1 Yule-Walker equations |
|
|
111 | (4) |
|
4.2.2 Levinson-Durbin algorithm |
|
|
115 | (5) |
|
4.2.3 Reflection coefficients and lattice filters |
|
|
120 | (4) |
|
4.3 Non-parametric spectral estimation of WSS processes |
|
|
124 | (15) |
|
|
125 | (1) |
|
|
125 | (3) |
|
4.3.3 Smoothed periodograms |
|
|
128 | (7) |
|
|
135 | (4) |
|
|
139 | (24) |
|
5.1 Hidden Markov Models (HMM) |
|
|
139 | (3) |
|
|
142 | (1) |
|
5.3 Gaussian linear case: the Kalman filter |
|
|
143 | (9) |
|
5.4 Discrete finite Markov case |
|
|
152 | (11) |
|
5.4.1 Forward-backward formulas |
|
|
153 | (2) |
|
5.4.2 Smoothing with one instant |
|
|
155 | (1) |
|
5.4.3 Smoothing with two instants |
|
|
156 | (1) |
|
5.4.4 HMM learning using the EM algorithm |
|
|
156 | (2) |
|
5.4.5 The Viterbi algorithm |
|
|
158 | (5) |
|
|
163 | (72) |
|
6.1 High resolution methods |
|
|
163 | (23) |
|
6.1.1 Estimating the fundamental of periodic signals: MUSIC |
|
|
163 | (14) |
|
6.1.2 Introduction to array processing: MUSIC, ESPRIT |
|
|
177 | (9) |
|
6.2 Digital Communications |
|
|
186 | (25) |
|
|
186 | (3) |
|
6.2.2 8-phase shift keying (PSK) |
|
|
189 | (2) |
|
|
191 | (2) |
|
6.2.4 Spectrum of a digital signal |
|
|
193 | (5) |
|
6.2.5 The Nyquist criterion in digital communications |
|
|
198 | (6) |
|
|
204 | (1) |
|
6.2.7 PAM modulation on the Nyquist channel |
|
|
205 | (6) |
|
6.3 Linear equalization and the Viterbi algorithm |
|
|
211 | (9) |
|
6.3.1 Linear equalization |
|
|
213 | (2) |
|
6.3.2 The soft decoding Viterbi algorithm |
|
|
215 | (5) |
|
|
220 | (15) |
|
6.4.1 Scalar Quantization |
|
|
220 | (2) |
|
6.4.2 Vector Quantization |
|
|
222 | (13) |
|
|
235 | (82) |
|
|
235 | (2) |
|
H2 Statistical inferences |
|
|
237 | (32) |
|
H3 Monte-Carlo simulation |
|
|
269 | (8) |
|
H4 Second order stationary process |
|
|
277 | (6) |
|
|
283 | (17) |
|
|
300 | (17) |
|
|
317 | (12) |
|
A1 Miscellaneous functions |
|
|
317 | (1) |
|
|
318 | (11) |
|
|
318 | (1) |
|
|
318 | (1) |
|
A.2.3 Student's distribution |
|
|
318 | (5) |
|
A.2.4 Chi-squared distribution |
|
|
323 | (3) |
|
A.2.5 Fisher's distribution |
|
|
326 | (3) |
Bibliography |
|
329 | (4) |
Index |
|
333 | |