Muutke küpsiste eelistusi

E-raamat: Digital Signal Processing with Matlab Examples, Volume 2: Decomposition, Recovery, Data-Based Actions

  • Formaat - EPUB+DRM
  • Hind: 122,88 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

 This is the second volume in a trilogy on modern Signal Processing. The three books provide a concise exposition of signal processing topics, and a guide to support individual practical exploration based on MATLAB programs.







This second book focuses on recent developments in response to the demands of new digital technologies. It is divided into two parts: the first part includes four chapters on the decomposition and recovery of signals, with special emphasis on images. In turn, the second part includes three chapters and addresses important data-based actions, such as adaptive filtering, experimental modeling, and classification.







 
Part I Decomposition and Recovery. Images
1 Filter Banks
3(112)
1.1 Introduction
3(1)
1.2 Filter Banks and Multirate Systems
4(19)
1.2.1 Discrete Fourier Transforms
5(4)
1.2.2 Modulated Filter Banks
9(6)
1.2.3 Decimators and Interpolators
15(3)
1.2.4 The Polyphase Representation
18(5)
1.3 Symmetries and Filter Types
23(16)
1.3.1 Linear Phase
24(1)
1.3.2 FIR Filters with Linear Phase
25(2)
1.3.3 Complementary Filters
27(1)
1.3.4 Symmetries in the Frequency Response
28(3)
1.3.5 Orthogonal FIR Filters
31(2)
1.3.6 Mirror FIR Filters
33(1)
1.3.7 Zeros of FIR Filters. Spectral Factorization
34(5)
1.4 Two-Channel Filters and Perfect Reconstruction
39(21)
1.4.1 Automatic Aliasing Cancellation, Perfect Reconstruction
39(8)
1.4.2 Design Approaches for Two-Channel Filter Banks with PR
47(11)
1.4.3 Conditions for Filters and Perfect Reconstruction
58(2)
1.5 Aspects of Unity Gain Systems
60(10)
1.5.1 Matrices of Interest
61(4)
1.5.2 Allpass Filters
65(2)
1.5.3 Lattice Structure
67(1)
1.5.4 The Case of 2-Channel Filter Banks
68(2)
1.6 Tree-Structured Filter Banks
70(2)
1.7 Uniform M-Channel Filter Banks
72(20)
1.7.1 Basic Equations
72(2)
1.7.2 Paraunitary M-Channel Filter Banks
74(1)
1.7.3 Cosine-Modulated Filter Banks
75(4)
1.7.4 Linear-Phase Filter Banks
79(13)
1.8 IIR Filter Banks
92(9)
1.8.1 Orthogonal IIR Filter Banks
93(2)
1.8.2 Linear Phase Orthogonal IIR Filter Banks
95(1)
1.8.3 Implementation Aspects
96(5)
1.9 Experiments
101(9)
1.9.1 Perfect Reconstruction, Music
101(2)
1.9.2 JPEG
103(2)
1.9.3 Watermarking
105(1)
1.9.4 Watermarking in Spectral Domain
105(3)
1.9.5 Watermarking in Signal Domain
108(2)
1.10 Resources
110(5)
1.10.1 MATLAB
110(1)
1.10.2 Internet
111(1)
References
111(4)
2 Wavelets
115(128)
2.1 Introduction
115(2)
2.2 An Important Example: The Haar Wavelets
117(20)
2.2.1 Definitions
117(2)
2.2.2 Multiresolution Analysis
119(12)
2.2.3 Wavelets and Filter Banks
131(6)
2.3 The Multiresolution Analysis Equation
137(19)
2.3.1 Solving the MAE
137(8)
2.3.2 Scaling Functions, Wavelets, and Function Expansions
145(2)
2.3.3 Examples
147(3)
2.3.4 Shannon Wavelets
150(2)
2.3.5 Splines
152(4)
2.4 Orthogonal Wavelets
156(26)
2.4.1 Meyer Wavelet
157(5)
2.4.2 Battle-Lemarie Wavelet
162(4)
2.4.3 Daubechies Wavelets
166(16)
2.5 Biorthogonal Wavelets
182(14)
2.5.1 Daubechies Approach
184(7)
2.5.2 More Ways to Find Biorthogonal Wavelets
191(5)
2.6 Continuous Wavelets
196(4)
2.6.1 The Mexican Hat Wavelet
196(1)
2.6.2 The Morlet Wavelet
197(2)
2.6.3 Complex B-Spline Wavelets
199(1)
2.7 Continuous Wavelet Transform (CWT)
200(2)
2.8 The Lifting Method and the Second Generation Wavelets
202(15)
2.8.1 Example
206(4)
2.8.2 Decomposition into Lifting Steps
210(3)
2.8.3 Examples
213(4)
2.9 More Analysis Flexibility
217(6)
2.9.1 M-Band Wavelets
218(1)
2.9.2 Wavelet Packets
219(2)
2.9.3 Multiwavelets
221(2)
2.10 Experiments
223(7)
2.10.1 ECG Analysis Using the Morlet Wavelet
223(3)
2.10.2 Signal Denoising
226(1)
2.10.3 Compression
227(3)
2.11 Applications
230(2)
2.11.1 Earth Sciences
230(1)
2.11.2 Medicine, Biology
231(1)
2.11.3 Chemical
232(1)
2.11.4 Industrial
232(1)
2.12 The MATLAB Wavelet Toolbox
232(4)
2.12.1 1-D Continuous Wavelet
233(1)
2.12.2 1-D Discrete Wavelet
233(2)
2.12.3 Wavelet Packets
235(1)
2.12.4 Lifting
235(1)
2.13 Resources
236(7)
2.13.1 MATLAB
236(1)
2.13.2 Internet
237(1)
References
238(5)
3 Image and 2D Signal Processing
243(102)
3.1 Introduction
243(1)
3.2 Image Files and Display
243(3)
3.2.1 Image Files
244(1)
3.2.2 Image Display with MATLAB
244(2)
3.3 Basic Image Analysis and Filtering
246(8)
3.3.1 Histograms
246(1)
3.3.2 Histogram Equalization
247(1)
3.3.3 Image Adjust
248(1)
3.3.4 2D Filtering with Neighbours
249(2)
3.3.5 Gaussian 2D Filters
251(3)
3.3.6 Picture Sharpening
254(1)
3.4 2D Fourier Transform
254(4)
3.4.1 2D Fourier Transform of Edges
255(2)
3.4.2 2D Fourier Transform of a Picture
257(1)
3.5 Filtering with the 2D Fourier Transform
258(12)
3.5.1 Basic Low Pass and High Pass Filtering using 2D DFT
259(3)
3.5.2 Other Low Pass Filters Using 2D DFT
262(3)
3.5.3 Other High-Pass Filters Using 2D DFT
265(5)
3.6 Edges
270(3)
3.6.1 Thresholding
270(1)
3.6.2 Edges
271(2)
3.7 Color Images
273(17)
3.7.1 RGB Example
283(2)
3.7.2 HSV Example
285(2)
3.7.3 YIQ Example
287(2)
3.7.4 Indexed Images
289(1)
3.8 Hough Transform and Radon Transform
290(17)
3.8.1 The Sinogram
290(2)
3.8.2 The Hough Transform
292(4)
3.8.3 The Radon Transform, and Computerized Tomography
296(9)
3.8.4 IPT Functions for the Radon Transform
305(2)
3.9 Filter Banks and Images
307(27)
3.9.1 Initial Overview
307(19)
3.9.2 Design of 2D Filters
326(8)
3.10 Nonequispaced Data and the Fourier Transform
334(4)
3.10.1 Fourier Transform Versions for the Polar Context
334(1)
3.10.2 Nonequispaced Fourier Transform
335(3)
3.11 Experiments
338(4)
3.11.1 Capturing Images with a Webcam
338(2)
3.11.2 Backprojection Steps
340(2)
3.12 Resources
342(3)
3.12.1 MATLAB
342(1)
3.12.2 Internet
342(1)
References
342(3)
4 Wavelet Variants for 2D Analysis
345(126)
4.1 Introduction
345(1)
4.2 Laplacian Pyramid
345(5)
4.3 Steerable Filters and Pyramids
350(18)
4.3.1 Steerable Filters
351(10)
4.3.2 Steerable Pyramid
361(7)
4.4 Application of Wavelets to Images
368(18)
4.4.1 Application to a Test Image
369(6)
4.4.2 Application to a Photograph
375(3)
4.4.3 Some Wavelet-Based Algorithms for Image Coding and Compression
378(8)
4.5 New Wavelets for Images
386(45)
4.5.1 Perspective
387(1)
4.5.2 Wedgelets
388(4)
4.5.3 Ridgelets and First Generation Curvelets
392(5)
4.5.4 Curvelets (Second Generation)
397(7)
4.5.5 Contourlets
404(5)
4.5.6 Bandelets
409(13)
4.5.7 Shearlets
422(5)
4.5.8 Other Wavelet Variants
427(4)
4.6 Complex Wavelets
431(10)
4.6.1 Implementation Issues
433(4)
4.6.2 2-D Application
437(4)
4.7 Experiments
441(7)
4.7.1 2 Level Haar Decomposition of the Image
441(1)
4.7.2 Fine Noise Is Added. Denoising Is Applied
441(2)
4.7.3 Patched Noise Is Added. Denoising Is Applied
443(1)
4.7.4 Display of LL Regions, No Noise
444(4)
4.8 Applications
448(7)
4.8.1 Denoising
449(2)
4.8.2 Compression
451(1)
4.8.3 Image Registration
452(2)
4.8.4 Seismic Signals
454(1)
4.8.5 Other Applications
454(1)
4.9 Resources
455(16)
4.9.1 MATLAB
455(2)
4.9.2 Internet
457(2)
References
459(12)
Part II Data-Based Actions: Adaptive Filtering, Modelling, Analysis, and Classification
5 Adaptive Filters and Observers
471(110)
5.1 Introduction
471(1)
5.2 The Wiener Filter
472(21)
5.2.1 Problem Statement. Transfer Function
473(5)
5.2.2 Versions of the Filter
478(8)
5.2.3 Spectral Factorization
486(2)
5.2.4 The Error Surface
488(3)
5.2.5 A Simple Example of Batch Mode and Recursive Mode
491(2)
5.3 Recursive Estimation of Filter Coefficients
493(12)
5.3.1 The RLS Method
494(4)
5.3.2 Search-Based Methods
498(7)
5.4 Adaptive Filters
505(12)
5.4.1 System Identification
506(2)
5.4.2 Inverse System Identification
508(3)
5.4.3 Noise Cancellation
511(4)
5.4.4 Linear Prediction
515(2)
5.5 Image Deblurring
517(8)
5.5.1 Motion blur
522(3)
5.6 More Adaptive Filters and Some Mathematical Aspects
525(20)
5.6.1 LMS Variants
525(4)
5.6.2 Other Adaptive Filters
529(1)
5.6.3 Mathematical Aspects
529(14)
5.6.4 Unifying Perspective
543(2)
5.7 Bayesian Estimation: Application to Images
545(19)
5.7.1 Introduction to Image Restoration
547(1)
5.7.2 Uniform Out-of-Focus Blur
548(1)
5.7.3 Atmospheric Turbulence Blur
548(1)
5.7.4 Linear Motion Blur
549(1)
5.7.5 The Lucy-Richardson Algorithm (RLA)
550(4)
5.7.6 Other Aspects of the Topic
554(10)
5.8 Observers
564(5)
5.8.1 The Luenberger Observer
564(4)
5.8.2 Noises
568(1)
5.9 Experiments
569(5)
5.9.1 Eigenvalues of Signals
569(3)
5.9.2 Water
572(1)
5.9.3 Fetal Heart Rate Monitoring
573(1)
5.10 Some Motivating Applications
574(2)
5.11 Resources
576(5)
5.11.1 MATLAB
576(1)
5.11.2 Internet
577(1)
References
578(3)
6 Experimental Modelling
581(66)
6.1 Introduction
581(1)
6.2 Data Fitting
582(3)
6.3 Coherence. Delays
585(9)
6.3.1 Coherence Between Two Signals
586(1)
6.3.2 Delays
587(7)
6.4 Basic Experimental Transfer Function Modelling
594(13)
6.4.1 Two Simple Transfer Function Examples
594(3)
6.4.2 Obtaining a Transfer Function Model from Impulse Response
597(3)
6.4.3 Obtaining a Transfer Function Model from Sine Sweep
600(3)
6.4.4 Obtaining a Transfer Function Model from Response to Noise
603(4)
6.5 The Case of Transfer Functions with Delay
607(10)
6.5.1 Two Simple Examples
607(1)
6.5.2 Responses of Case 1d
608(3)
6.5.3 Responses of Case 2d
611(2)
6.5.4 Detecting the Delay
613(1)
6.5.5 Getting Strange Models
614(3)
6.6 Methods for Frequency-Domain Modelling
617(5)
6.6.1 The Levi's Approximation
618(2)
6.6.2 The SK Iterative Weighted Approach
620(1)
6.6.3 The Vector Fitting (VF) Approach
620(2)
6.7 Methods for Time-Series Modelling
622(6)
6.7.1 Basic Identification Methods
624(2)
6.7.2 Variants of Recursive Parameter Estimation
626(2)
6.8 Experiments
628(7)
6.8.1 AR Model Identification of Canadian Lynx Data
628(2)
6.8.2 Model Order
630(5)
6.9 Introduction to the MATLAB System Identification Toolbox
635(7)
6.9.1 Identification Steps Using the Toolbox Functions
635(2)
6.9.2 Using the GUI
637(5)
6.10 Resources
642(5)
6.10.1 MATLAB
642(1)
6.10.2 Internet
643(1)
References
643(4)
7 Data Analysis and Classification
647(190)
7.1 Introduction
647(1)
7.2 A Basic Idea of Component Analysis
648(3)
7.3 Principal Component Analysis (PCA)
651(14)
7.3.1 Mathematical Aspects
652(3)
7.3.2 Principal Components
655(4)
7.3.3 Application Examples
659(6)
7.4 Independent Component Analysis (ICA)
665(46)
7.4.1 Blind Source Separation and the Cocktail Party Problem
665(3)
7.4.2 PCA and ICA
668(2)
7.4.3 Whitening
670(9)
7.4.4 Determination of Non-Gaussianity
679(11)
7.4.5 Assumptions of the ICA Method. Independence
690(3)
7.4.6 Contrast Functions
693(1)
7.4.7 Optimization Algorithms
694(10)
7.4.8 Application Examples
704(7)
7.5 Clusters. Discrimination
711(37)
7.5.1 Discrimination
714(7)
7.5.2 Clustering
721(7)
7.5.3 Kernels
728(15)
7.5.4 Other Approaches
743(5)
7.6 Classification and Probabilities
748(31)
7.6.1 The Expectation-Maximization Algorithm (EM)
749(4)
7.6.2 Naive Bayes Classifier
753(2)
7.6.3 Quadratic Discriminant Analysis (QDA)
755(2)
7.6.4 Logistic Discriminantion
757(1)
7.6.5 Bayesian Linear Regression. Prediction
758(6)
7.6.6 Sets of Random Variables. Kriging
764(8)
7.6.7 Gaussian Processes (GP)
772(7)
7.7 Entropy, Divergence, and Related Aspects
779(6)
7.7.1 Entropy
779(1)
7.7.2 Divergence
780(2)
7.7.3 Jensen's Inequality
782(1)
7.7.4 Variational Bayes Methodology
783(2)
7.8 Neurons
785(11)
7.8.1 The Perceptron
786(3)
7.8.2 The Adaline
789(1)
7.8.3 Multilayer Neural Networks
790(6)
7.9 Experiments
796(19)
7.9.1 Face Detection
796(15)
7.9.2 Color Reduction Using K-Means
811(4)
7.10 Some Pointers to Related Topics
815(3)
7.11 Resources
818(19)
7.11.1 MATLAB
818(2)
7.11.2 Internet
820(2)
References
822(15)
Appendix: Long Programs 837(72)
Index 909
Prof. Jose M. Giron-Sierra was born in Valladolid, Spain. He received his Ph.D. in Physics in 1978, Universidad Complutense de Madrid, Spain. Prof. Giron-Sierra wrote more than 160 publications in various international journals. He is IEEE, AIAA, and Eurosim member and belongs to two IFAC Technical Committees.