|
Part I Decomposition and Recovery. Images |
|
|
|
|
3 | (112) |
|
|
3 | (1) |
|
1.2 Filter Banks and Multirate Systems |
|
|
4 | (19) |
|
1.2.1 Discrete Fourier Transforms |
|
|
5 | (4) |
|
1.2.2 Modulated Filter Banks |
|
|
9 | (6) |
|
1.2.3 Decimators and Interpolators |
|
|
15 | (3) |
|
1.2.4 The Polyphase Representation |
|
|
18 | (5) |
|
1.3 Symmetries and Filter Types |
|
|
23 | (16) |
|
|
24 | (1) |
|
1.3.2 FIR Filters with Linear Phase |
|
|
25 | (2) |
|
1.3.3 Complementary Filters |
|
|
27 | (1) |
|
1.3.4 Symmetries in the Frequency Response |
|
|
28 | (3) |
|
1.3.5 Orthogonal FIR Filters |
|
|
31 | (2) |
|
|
33 | (1) |
|
1.3.7 Zeros of FIR Filters. Spectral Factorization |
|
|
34 | (5) |
|
1.4 Two-Channel Filters and Perfect Reconstruction |
|
|
39 | (21) |
|
1.4.1 Automatic Aliasing Cancellation, Perfect Reconstruction |
|
|
39 | (8) |
|
1.4.2 Design Approaches for Two-Channel Filter Banks with PR |
|
|
47 | (11) |
|
1.4.3 Conditions for Filters and Perfect Reconstruction |
|
|
58 | (2) |
|
1.5 Aspects of Unity Gain Systems |
|
|
60 | (10) |
|
1.5.1 Matrices of Interest |
|
|
61 | (4) |
|
|
65 | (2) |
|
|
67 | (1) |
|
1.5.4 The Case of 2-Channel Filter Banks |
|
|
68 | (2) |
|
1.6 Tree-Structured Filter Banks |
|
|
70 | (2) |
|
1.7 Uniform M-Channel Filter Banks |
|
|
72 | (20) |
|
|
72 | (2) |
|
1.7.2 Paraunitary M-Channel Filter Banks |
|
|
74 | (1) |
|
1.7.3 Cosine-Modulated Filter Banks |
|
|
75 | (4) |
|
1.7.4 Linear-Phase Filter Banks |
|
|
79 | (13) |
|
|
92 | (9) |
|
1.8.1 Orthogonal IIR Filter Banks |
|
|
93 | (2) |
|
1.8.2 Linear Phase Orthogonal IIR Filter Banks |
|
|
95 | (1) |
|
1.8.3 Implementation Aspects |
|
|
96 | (5) |
|
|
101 | (9) |
|
1.9.1 Perfect Reconstruction, Music |
|
|
101 | (2) |
|
|
103 | (2) |
|
|
105 | (1) |
|
1.9.4 Watermarking in Spectral Domain |
|
|
105 | (3) |
|
1.9.5 Watermarking in Signal Domain |
|
|
108 | (2) |
|
|
110 | (5) |
|
|
110 | (1) |
|
|
111 | (1) |
|
|
111 | (4) |
|
|
115 | (128) |
|
|
115 | (2) |
|
2.2 An Important Example: The Haar Wavelets |
|
|
117 | (20) |
|
|
117 | (2) |
|
2.2.2 Multiresolution Analysis |
|
|
119 | (12) |
|
2.2.3 Wavelets and Filter Banks |
|
|
131 | (6) |
|
2.3 The Multiresolution Analysis Equation |
|
|
137 | (19) |
|
|
137 | (8) |
|
2.3.2 Scaling Functions, Wavelets, and Function Expansions |
|
|
145 | (2) |
|
|
147 | (3) |
|
|
150 | (2) |
|
|
152 | (4) |
|
|
156 | (26) |
|
|
157 | (5) |
|
2.4.2 Battle-Lemarie Wavelet |
|
|
162 | (4) |
|
2.4.3 Daubechies Wavelets |
|
|
166 | (16) |
|
2.5 Biorthogonal Wavelets |
|
|
182 | (14) |
|
2.5.1 Daubechies Approach |
|
|
184 | (7) |
|
2.5.2 More Ways to Find Biorthogonal Wavelets |
|
|
191 | (5) |
|
|
196 | (4) |
|
2.6.1 The Mexican Hat Wavelet |
|
|
196 | (1) |
|
|
197 | (2) |
|
2.6.3 Complex B-Spline Wavelets |
|
|
199 | (1) |
|
2.7 Continuous Wavelet Transform (CWT) |
|
|
200 | (2) |
|
2.8 The Lifting Method and the Second Generation Wavelets |
|
|
202 | (15) |
|
|
206 | (4) |
|
2.8.2 Decomposition into Lifting Steps |
|
|
210 | (3) |
|
|
213 | (4) |
|
2.9 More Analysis Flexibility |
|
|
217 | (6) |
|
|
218 | (1) |
|
|
219 | (2) |
|
|
221 | (2) |
|
|
223 | (7) |
|
2.10.1 ECG Analysis Using the Morlet Wavelet |
|
|
223 | (3) |
|
|
226 | (1) |
|
|
227 | (3) |
|
|
230 | (2) |
|
|
230 | (1) |
|
|
231 | (1) |
|
|
232 | (1) |
|
|
232 | (1) |
|
2.12 The MATLAB Wavelet Toolbox |
|
|
232 | (4) |
|
2.12.1 1-D Continuous Wavelet |
|
|
233 | (1) |
|
2.12.2 1-D Discrete Wavelet |
|
|
233 | (2) |
|
|
235 | (1) |
|
|
235 | (1) |
|
|
236 | (7) |
|
|
236 | (1) |
|
|
237 | (1) |
|
|
238 | (5) |
|
3 Image and 2D Signal Processing |
|
|
243 | (102) |
|
|
243 | (1) |
|
3.2 Image Files and Display |
|
|
243 | (3) |
|
|
244 | (1) |
|
3.2.2 Image Display with MATLAB |
|
|
244 | (2) |
|
3.3 Basic Image Analysis and Filtering |
|
|
246 | (8) |
|
|
246 | (1) |
|
3.3.2 Histogram Equalization |
|
|
247 | (1) |
|
|
248 | (1) |
|
3.3.4 2D Filtering with Neighbours |
|
|
249 | (2) |
|
3.3.5 Gaussian 2D Filters |
|
|
251 | (3) |
|
|
254 | (1) |
|
|
254 | (4) |
|
3.4.1 2D Fourier Transform of Edges |
|
|
255 | (2) |
|
3.4.2 2D Fourier Transform of a Picture |
|
|
257 | (1) |
|
3.5 Filtering with the 2D Fourier Transform |
|
|
258 | (12) |
|
3.5.1 Basic Low Pass and High Pass Filtering using 2D DFT |
|
|
259 | (3) |
|
3.5.2 Other Low Pass Filters Using 2D DFT |
|
|
262 | (3) |
|
3.5.3 Other High-Pass Filters Using 2D DFT |
|
|
265 | (5) |
|
|
270 | (3) |
|
|
270 | (1) |
|
|
271 | (2) |
|
|
273 | (17) |
|
|
283 | (2) |
|
|
285 | (2) |
|
|
287 | (2) |
|
|
289 | (1) |
|
3.8 Hough Transform and Radon Transform |
|
|
290 | (17) |
|
|
290 | (2) |
|
3.8.2 The Hough Transform |
|
|
292 | (4) |
|
3.8.3 The Radon Transform, and Computerized Tomography |
|
|
296 | (9) |
|
3.8.4 IPT Functions for the Radon Transform |
|
|
305 | (2) |
|
3.9 Filter Banks and Images |
|
|
307 | (27) |
|
|
307 | (19) |
|
3.9.2 Design of 2D Filters |
|
|
326 | (8) |
|
3.10 Nonequispaced Data and the Fourier Transform |
|
|
334 | (4) |
|
3.10.1 Fourier Transform Versions for the Polar Context |
|
|
334 | (1) |
|
3.10.2 Nonequispaced Fourier Transform |
|
|
335 | (3) |
|
|
338 | (4) |
|
3.11.1 Capturing Images with a Webcam |
|
|
338 | (2) |
|
3.11.2 Backprojection Steps |
|
|
340 | (2) |
|
|
342 | (3) |
|
|
342 | (1) |
|
|
342 | (1) |
|
|
342 | (3) |
|
4 Wavelet Variants for 2D Analysis |
|
|
345 | (126) |
|
|
345 | (1) |
|
|
345 | (5) |
|
4.3 Steerable Filters and Pyramids |
|
|
350 | (18) |
|
|
351 | (10) |
|
|
361 | (7) |
|
4.4 Application of Wavelets to Images |
|
|
368 | (18) |
|
4.4.1 Application to a Test Image |
|
|
369 | (6) |
|
4.4.2 Application to a Photograph |
|
|
375 | (3) |
|
4.4.3 Some Wavelet-Based Algorithms for Image Coding and Compression |
|
|
378 | (8) |
|
4.5 New Wavelets for Images |
|
|
386 | (45) |
|
|
387 | (1) |
|
|
388 | (4) |
|
4.5.3 Ridgelets and First Generation Curvelets |
|
|
392 | (5) |
|
4.5.4 Curvelets (Second Generation) |
|
|
397 | (7) |
|
|
404 | (5) |
|
|
409 | (13) |
|
|
422 | (5) |
|
4.5.8 Other Wavelet Variants |
|
|
427 | (4) |
|
|
431 | (10) |
|
4.6.1 Implementation Issues |
|
|
433 | (4) |
|
|
437 | (4) |
|
|
441 | (7) |
|
4.7.1 2 Level Haar Decomposition of the Image |
|
|
441 | (1) |
|
4.7.2 Fine Noise Is Added. Denoising Is Applied |
|
|
441 | (2) |
|
4.7.3 Patched Noise Is Added. Denoising Is Applied |
|
|
443 | (1) |
|
4.7.4 Display of LL Regions, No Noise |
|
|
444 | (4) |
|
|
448 | (7) |
|
|
449 | (2) |
|
|
451 | (1) |
|
|
452 | (2) |
|
|
454 | (1) |
|
|
454 | (1) |
|
|
455 | (16) |
|
|
455 | (2) |
|
|
457 | (2) |
|
|
459 | (12) |
|
Part II Data-Based Actions: Adaptive Filtering, Modelling, Analysis, and Classification |
|
|
|
5 Adaptive Filters and Observers |
|
|
471 | (110) |
|
|
471 | (1) |
|
|
472 | (21) |
|
5.2.1 Problem Statement. Transfer Function |
|
|
473 | (5) |
|
5.2.2 Versions of the Filter |
|
|
478 | (8) |
|
5.2.3 Spectral Factorization |
|
|
486 | (2) |
|
|
488 | (3) |
|
5.2.5 A Simple Example of Batch Mode and Recursive Mode |
|
|
491 | (2) |
|
5.3 Recursive Estimation of Filter Coefficients |
|
|
493 | (12) |
|
|
494 | (4) |
|
5.3.2 Search-Based Methods |
|
|
498 | (7) |
|
|
505 | (12) |
|
5.4.1 System Identification |
|
|
506 | (2) |
|
5.4.2 Inverse System Identification |
|
|
508 | (3) |
|
|
511 | (4) |
|
|
515 | (2) |
|
|
517 | (8) |
|
|
522 | (3) |
|
5.6 More Adaptive Filters and Some Mathematical Aspects |
|
|
525 | (20) |
|
|
525 | (4) |
|
5.6.2 Other Adaptive Filters |
|
|
529 | (1) |
|
5.6.3 Mathematical Aspects |
|
|
529 | (14) |
|
5.6.4 Unifying Perspective |
|
|
543 | (2) |
|
5.7 Bayesian Estimation: Application to Images |
|
|
545 | (19) |
|
5.7.1 Introduction to Image Restoration |
|
|
547 | (1) |
|
5.7.2 Uniform Out-of-Focus Blur |
|
|
548 | (1) |
|
5.7.3 Atmospheric Turbulence Blur |
|
|
548 | (1) |
|
|
549 | (1) |
|
5.7.5 The Lucy-Richardson Algorithm (RLA) |
|
|
550 | (4) |
|
5.7.6 Other Aspects of the Topic |
|
|
554 | (10) |
|
|
564 | (5) |
|
5.8.1 The Luenberger Observer |
|
|
564 | (4) |
|
|
568 | (1) |
|
|
569 | (5) |
|
5.9.1 Eigenvalues of Signals |
|
|
569 | (3) |
|
|
572 | (1) |
|
5.9.3 Fetal Heart Rate Monitoring |
|
|
573 | (1) |
|
5.10 Some Motivating Applications |
|
|
574 | (2) |
|
|
576 | (5) |
|
|
576 | (1) |
|
|
577 | (1) |
|
|
578 | (3) |
|
|
581 | (66) |
|
|
581 | (1) |
|
|
582 | (3) |
|
|
585 | (9) |
|
6.3.1 Coherence Between Two Signals |
|
|
586 | (1) |
|
|
587 | (7) |
|
6.4 Basic Experimental Transfer Function Modelling |
|
|
594 | (13) |
|
6.4.1 Two Simple Transfer Function Examples |
|
|
594 | (3) |
|
6.4.2 Obtaining a Transfer Function Model from Impulse Response |
|
|
597 | (3) |
|
6.4.3 Obtaining a Transfer Function Model from Sine Sweep |
|
|
600 | (3) |
|
6.4.4 Obtaining a Transfer Function Model from Response to Noise |
|
|
603 | (4) |
|
6.5 The Case of Transfer Functions with Delay |
|
|
607 | (10) |
|
6.5.1 Two Simple Examples |
|
|
607 | (1) |
|
6.5.2 Responses of Case 1d |
|
|
608 | (3) |
|
6.5.3 Responses of Case 2d |
|
|
611 | (2) |
|
6.5.4 Detecting the Delay |
|
|
613 | (1) |
|
6.5.5 Getting Strange Models |
|
|
614 | (3) |
|
6.6 Methods for Frequency-Domain Modelling |
|
|
617 | (5) |
|
6.6.1 The Levi's Approximation |
|
|
618 | (2) |
|
6.6.2 The SK Iterative Weighted Approach |
|
|
620 | (1) |
|
6.6.3 The Vector Fitting (VF) Approach |
|
|
620 | (2) |
|
6.7 Methods for Time-Series Modelling |
|
|
622 | (6) |
|
6.7.1 Basic Identification Methods |
|
|
624 | (2) |
|
6.7.2 Variants of Recursive Parameter Estimation |
|
|
626 | (2) |
|
|
628 | (7) |
|
6.8.1 AR Model Identification of Canadian Lynx Data |
|
|
628 | (2) |
|
|
630 | (5) |
|
6.9 Introduction to the MATLAB System Identification Toolbox |
|
|
635 | (7) |
|
6.9.1 Identification Steps Using the Toolbox Functions |
|
|
635 | (2) |
|
|
637 | (5) |
|
|
642 | (5) |
|
|
642 | (1) |
|
|
643 | (1) |
|
|
643 | (4) |
|
7 Data Analysis and Classification |
|
|
647 | (190) |
|
|
647 | (1) |
|
7.2 A Basic Idea of Component Analysis |
|
|
648 | (3) |
|
7.3 Principal Component Analysis (PCA) |
|
|
651 | (14) |
|
7.3.1 Mathematical Aspects |
|
|
652 | (3) |
|
7.3.2 Principal Components |
|
|
655 | (4) |
|
7.3.3 Application Examples |
|
|
659 | (6) |
|
7.4 Independent Component Analysis (ICA) |
|
|
665 | (46) |
|
7.4.1 Blind Source Separation and the Cocktail Party Problem |
|
|
665 | (3) |
|
|
668 | (2) |
|
|
670 | (9) |
|
7.4.4 Determination of Non-Gaussianity |
|
|
679 | (11) |
|
7.4.5 Assumptions of the ICA Method. Independence |
|
|
690 | (3) |
|
|
693 | (1) |
|
7.4.7 Optimization Algorithms |
|
|
694 | (10) |
|
7.4.8 Application Examples |
|
|
704 | (7) |
|
7.5 Clusters. Discrimination |
|
|
711 | (37) |
|
|
714 | (7) |
|
|
721 | (7) |
|
|
728 | (15) |
|
|
743 | (5) |
|
7.6 Classification and Probabilities |
|
|
748 | (31) |
|
7.6.1 The Expectation-Maximization Algorithm (EM) |
|
|
749 | (4) |
|
7.6.2 Naive Bayes Classifier |
|
|
753 | (2) |
|
7.6.3 Quadratic Discriminant Analysis (QDA) |
|
|
755 | (2) |
|
7.6.4 Logistic Discriminantion |
|
|
757 | (1) |
|
7.6.5 Bayesian Linear Regression. Prediction |
|
|
758 | (6) |
|
7.6.6 Sets of Random Variables. Kriging |
|
|
764 | (8) |
|
7.6.7 Gaussian Processes (GP) |
|
|
772 | (7) |
|
7.7 Entropy, Divergence, and Related Aspects |
|
|
779 | (6) |
|
|
779 | (1) |
|
|
780 | (2) |
|
7.7.3 Jensen's Inequality |
|
|
782 | (1) |
|
7.7.4 Variational Bayes Methodology |
|
|
783 | (2) |
|
|
785 | (11) |
|
|
786 | (3) |
|
|
789 | (1) |
|
7.8.3 Multilayer Neural Networks |
|
|
790 | (6) |
|
|
796 | (19) |
|
|
796 | (15) |
|
7.9.2 Color Reduction Using K-Means |
|
|
811 | (4) |
|
7.10 Some Pointers to Related Topics |
|
|
815 | (3) |
|
|
818 | (19) |
|
|
818 | (2) |
|
|
820 | (2) |
|
|
822 | (15) |
Appendix: Long Programs |
|
837 | (72) |
Index |
|
909 | |