Muutke küpsiste eelistusi

E-raamat: Digital Signal Processing in Power Electronics Control Circuits

  • Formaat: PDF+DRM
  • Sari: Power Systems
  • Ilmumisaeg: 10-May-2017
  • Kirjastus: Springer London Ltd
  • Keel: eng
  • ISBN-13: 9781447173328
  • Formaat - PDF+DRM
  • Hind: 184,63 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Power Systems
  • Ilmumisaeg: 10-May-2017
  • Kirjastus: Springer London Ltd
  • Keel: eng
  • ISBN-13: 9781447173328

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This revised and extended second edition covers problems concerning the design and realization of digital control algorithms for power electronics circuits using digital signal processing (DSP) methods. This book discusses signal processing, starting from analog signal acquisition, through conversion to digital form, methods of filtration and separation, and ending with pulse control of output power transistors. The book is focused on two applications for the considered methods of digital signal processing, a three-phase shunt active power filter and a digital class-D audio power amplifier. The book bridges the gap between power electronics and digital signal processing.

Many control algorithms and circuits for power electronics in the current literature are described using analog transmittances. This may not always be acceptable, especially if half of the sampling frequencies and half of the power transistor switching frequencies are close to the band of interest. Therefore in this book, a digital circuit is treated as a digital circuit with its own peculiar characteristics, rather than an analog circuit. This helps to avoid errors and instability.

This edition includes a new chapter dealing with selected problems of simulation of power electronics systems together with digital control circuits. The book includes numerous examples using MATLAB and PSIM programs.


This book discusses problems concerning the design and realization of digital control algorithms for power electronics circuits using digital signal processing (DSP) methods. It includes Matlab examples for illustration of considered problems.
1 Introduction
1(22)
1.1 Power Electronics Systems
1(2)
1.2 Digital Control Circuits for Power Electronics Systems
3(10)
1.2.1 Analog Versus Digital Control Circuit
5(1)
1.2.2 Causal and Non-causal Digital Circuits
5(1)
1.2.3 LTI Discrete-Time Circuits
6(2)
1.2.4 Digital Filters
8(2)
1.2.5 Hard Real-Time Control Systems
10(1)
1.2.6 Sampling Rate
11(1)
1.2.7 Simultaneous Sampling
12(1)
1.2.8 Number of Bits
12(1)
1.3 Multirate Control Circuits
13(1)
1.4 Active Power Filters
14(2)
1.5 Digital Class-D Power Amplifiers
16(2)
1.6 Symbols of Variables
18(1)
1.7 What Is in This Book
18(5)
References
20(3)
2 Analog Signals Conditioning and Discretization
23(60)
2.1 Introduction
23(1)
2.2 Analog Input
23(9)
2.2.1 Galvanic Isolation
23(2)
2.2.2 Common Mode Voltage
25(2)
2.2.3 Isolation Amplifiers
27(5)
2.3 Current Measurements
32(9)
2.3.1 A Resistive Shunt
32(1)
2.3.2 Current Transformers
33(2)
2.3.3 Transformer with Hall Sensor
35(3)
2.3.4 Current Transformer with Magnetic Modulation
38(1)
2.3.5 Current Transducer with Air Coil
38(3)
2.3.6 Comparison of Current Sensing Techniques
41(1)
2.4 Selected Parameters of Digital Control Circuit
41(2)
2.5 Total Harmonic Distortion
43(2)
2.6 Sampling of Analog Signal
45(12)
2.6.1 Synchronization of Sampling Process
47(2)
2.6.2 Maximum Signal Frequency Versus Signal Acquisition Time
49(1)
2.6.3 Errors in Multichannel System
50(2)
2.6.4 Amplitude and Phase Errors of Sequential Sampling A/D Conversion
52(2)
2.6.5 Sampling Clock Jitter
54(3)
2.7 Signal Quantization
57(11)
2.7.1 Dynamic Range of Signal
59(1)
2.7.2 Signal Headroom
59(1)
2.7.3 Noise Shaping Technique
60(3)
2.7.4 Dither
63(2)
2.7.5 Propagation of Quantization Noise
65(1)
2.7.6 Effective Number of Bits
66(2)
2.8 A/D Converters Suitable for Power Electronics Control Circuits
68(9)
2.8.1 A/D Converter with Successive Approximation
69(1)
2.8.2 A/D Converter with Delta Sigma Modulator
70(1)
2.8.3 Selected Simultaneous Sampling A/D Converters
70(1)
2.8.4 ADS8364
71(1)
2.8.5 AD7608
72(1)
2.8.6 ADS1278
73(1)
2.8.7 ADS8568
74(1)
2.8.8 A/D Conventer of TMS320F28335
75(2)
2.8.9 A/D Converters of TMS320F2837xD
77(1)
2.9 Conclusions
77(6)
References
78(5)
3 Selected Methods of Signal Filtration and Separation and Their Implementation
83(84)
3.1 Introduction
83(1)
3.2 Digital Filters
84(10)
3.2.1 Digital Filter Specifications
84(1)
3.2.2 Finite Impulse Response Digital Filters
85(2)
3.2.3 Infinite Impulse Response Digital Filters
87(3)
3.2.4 Design of Digital IIR Filters
90(4)
3.3 Lattice Wave Digital Filters
94(6)
3.3.1 Comparison of Classical IIR Filter and Lattice Wave Digital Filter
96(1)
3.3.2 Realization of LWDF
97(3)
3.4 Modified Lattice Wave Digital Filters
100(7)
3.4.1 First-Order Sections
101(3)
3.4.2 Second-Order Sections
104(3)
3.5 Linear-Phase IIR Filters
107(8)
3.5.1 Example of a Linear-Phase IIR Filter
111(3)
3.5.2 Comparison of FIR and LF IIR
114(1)
3.6 Multirate Circuits
115(11)
3.6.1 Signal Interpolation
115(4)
3.6.2 Signal Decimation
119(2)
3.6.3 Multirate Circuits with Wave Digital Filters
121(2)
3.6.4 Interpolators with Linear-Phase IIR Filters
123(3)
3.7 Digital Filter Banks
126(20)
3.7.1 Strictly Complementary Filter Bank
128(1)
3.7.2 DFT Filter Bank
129(2)
3.7.3 Sliding DFT Algorithm
131(5)
3.7.4 Sliding Goertzel Algorithm
136(1)
3.7.5 Moving DFT Algorithm
136(3)
3.7.6 Wave Digital Lattice Filter Bank
139(7)
3.8 Implementation of Digital Signal Processing Algorithms
146(7)
3.8.1 Basic Features of the DSP
148(5)
3.9 Selected Microcontrollers Suitable for Power Electronics Control Circuits
153(8)
3.9.1 TMS320F28335
155(2)
3.9.2 TMS320F2837xD
157(1)
3.9.3 Digital Signal Processor---TMS320C6xxx Family
157(2)
3.9.4 Digital Signal Processors---SHARC Family
159(2)
3.10 Conclusions
161(6)
References
161(6)
4 Selected Simulation Methods and Programs for Power Electronics Circuits
167(32)
4.1 Introduction
167(2)
4.2 Simulation Using MATLAB®
169(15)
4.2.1 DC and AC Analysis of Analog Circuits
169(5)
4.2.2 DC and AC Nodal and Loop Analysis of Circuits
174(3)
4.2.3 Transient Analysis of Analog Circuits
177(3)
4.2.4 Simulation of Power Electronics System Together with Digital Control Circuit
180(3)
4.2.5 Simulation of the Power Electronics System Using Simulink®
183(1)
4.3 Simulation Using PSIM
184(12)
4.3.1 Simulation Using the Typical PSIM Blocks
184(1)
4.3.2 Simulation Using C Code
185(5)
4.3.3 Simulation with AC Analysis
190(2)
4.3.4 Simulation to Hardware Implementation
192(4)
4.4 Conclusions
196(3)
References
196(3)
5 Selected Active Power Filter Control Algorithms
199(78)
5.1 Introduction
199(1)
5.2 Control Circuit of Shunt APFs
200(3)
5.2.1 Synchronization
201(2)
5.3 Simulation of APF
203(3)
5.3.1 Simulation of APF Using MATLAB
204(2)
5.3.2 Simulation of APF Using PSIM
206(1)
5.4 APF Control with First Harmonic Detector
206(12)
5.4.1 Control Circuit with Low-Pass 4-Order Butterworth Filter
208(1)
5.4.2 Control Circuit with Low-Pass 5-Order Butterworth LWDF
209(1)
5.4.3 Control Circuit with Sliding DFT
210(5)
5.4.4 Control Circuit with Sliding Goertzel
215(1)
5.4.5 Control Circuit with Moving DFT
215(3)
5.5 The Control Circuit for the Shunt APF Based on p -- q Algorithm
218(4)
5.6 Shunt APF Classical Control Circuit
222(11)
5.6.1 High-Pass UR Filter
226(1)
5.6.2 Improved High-Pass Filter
227(2)
5.6.3 DC Bank Voltage Controller
229(1)
5.6.4 The Remaining Part of the p -- q Algorithm
229(1)
5.6.5 Output Current Controller
230(1)
5.6.6 Modernized Digital Controller for the APF
231(2)
5.7 Dynamics of Shunt APF
233(11)
5.7.1 Methods of Reducing APF Dynamic Distortion
233(3)
5.7.2 Control Circuit
236(4)
5.7.3 APF Output Current Ripple Calculation
240(3)
5.7.4 Simulation of APF Control Circuit
243(1)
5.8 Predictive Control Algorithm for APF
244(10)
5.8.1 Advance Time TA
245(3)
5.8.2 Experimental Results for Steady-State
248(1)
5.8.3 Step Response of APF
248(6)
5.9 Selected Harmonics Separation Methods Suitable for APF
254(4)
5.9.1 Control Circuit with MDFT
255(1)
5.9.2 Control Circuit with p -- q Algorithm
255(3)
5.10 Multirate Shunt APF
258(12)
5.10.1 Analog Input Circuit
260(4)
5.10.2 The Output Inductors
264(1)
5.10.3 APF Simulation Results
264(6)
5.11 Multirate Shunt APF with Prediction
270(1)
5.12 Conclusions
271(6)
References
272(5)
6 Digital Signal Processing Circuits for Digital Class-D Power Amplifiers
277(56)
6.1 Introduction
277(1)
6.2 Digital Class-D Power Amplifier Circuits
278(3)
6.3 Modulators for Digital Class-D Power Amplifiers
281(4)
6.3.1 Oversampled Pulse Width Modulator
284(1)
6.4 Basic Topologies of Control Circuits for Digital Class-D Power Amplifiers
285(6)
6.4.1 Open Loop Amplifiers
285(2)
6.4.2 Amplifiers with Digital Feedback for Supply Voltage
287(1)
6.4.3 Amplifiers with Analog Feedback for Output Pulses
287(3)
6.4.4 Amplifiers with Digital Feedback
290(1)
6.5 Supply Units for Class-D Power Amplifiers
291(2)
6.6 Click Modulation
293(2)
6.7 Interpolators for High Quality Audio Signals
295(5)
6.7.1 Single Stage Interpolators
295(1)
6.7.2 Multistage Interpolators
296(4)
6.8 Class-D Audio Power Amplifiers
300(4)
6.8.1 Digital Crossovers
302(2)
6.9 Loudspeaker Measurements
304(5)
6.10 Class-D Power Amplifier with Digital Click Modulator
309(12)
6.10.1 Digital Crossovers
310(4)
6.10.2 Realization of Digital Click Modulator
314(4)
6.10.3 Experimental Results
318(3)
6.11 Digital Audio Class-D Power Amplifier with TAS5508 DSP
321(8)
6.11.1 TAS5508-5121K8EVM
322(4)
6.11.2 Three-Way Digital Crossover
326(1)
6.11.3 Experimental Results
326(3)
6.12 Conclusions
329(4)
References
330(3)
7 Conclusion
333(4)
7.1 Summary of Results
333(2)
7.2 Future Work
335(2)
References
336(1)
Index 337
Krzysztof Sozaski is an Associate Professor in the Electrical Engineering Institute at the University of Zielona Góra, Zielona Góra, Poland. His main research areas are: digital signal processing, digital signal processing in power electronics, realizations of advanced control algorithms using digital signal processors, programming of digital signal processors (DSP), software for microcontrollers and DSP, especially C language, Matlab, Pspice, Psim for simulation, and designing magnetic elements for power electronics.