Muutke küpsiste eelistusi

E-raamat: Two-Dimensional Materials for Electromagnetic Shielding

  • Formaat: PDF+DRM
  • Ilmumisaeg: 03-Jun-2021
  • Kirjastus: Blackwell Verlag GmbH
  • Keel: eng
  • ISBN-13: 9783527829804
  • Formaat - PDF+DRM
  • Hind: 135,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 03-Jun-2021
  • Kirjastus: Blackwell Verlag GmbH
  • Keel: eng
  • ISBN-13: 9783527829804

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Two-Dimensional Materials for Electromagnetic Shielding Discover a cutting-edge reference on 2D EMI shielding materials for both industrial and academic audiences

Two-Dimensional Materials for Electromagnetic Shielding delivers a thorough and comprehensive examination of all aspects of electromagnetic interference (EMI) shielding and microwave absorption, including fundamentals and applications, as well as emerging 2D materials in the field, like graphene, and MXenes. The book covers basic knowledge on shielding mechanisms and the demanding physical, chemical, and mechanical properties of the 2D materials against betrayed electromagnetic waves.

The benefits of novel 2D materials over existing materials are thoroughly explained and the reader is provided with insight into future developments in shielding materials for highly integrated electrical and electronic equipment. The book offers explanations and in-depth descriptions of graphene and MXenes materials, as well as likely future challenges that will confront practitioners in the field. Ideal for scientists, researchers, and engineers who design novel EMI shielding materials, the book also provides:





A thorough introduction to electromagnetic field sources and their impact on human beings An exploration of EMI shielding mechanism and conversion techniques, including microwave absorption mechanisms and scattering parameter conversion methods Discussions of measurements and standards in EMI shielding, including shielding effectiveness measurements An examination of graphene, MXenes, and other 2D materials for EMI shielding and microwave absorbing

Perfect for materials scientists, electrochemists, inorganic chemists, physical chemists, and radiation chemists, Two-Dimensional Materials for Electromagnetic Shielding will also earn a place in the libraries of applied physicists and engineering scientists in industry seeking a one-stop reference on cutting-edge 2D electromagnetic interference shielding materials.
Preface ix
1 Electromagnetic Interference and Shielding
1(24)
1.1 Introduction
1(1)
1.2 Electromagnetic Field Sources and Impact on Human Beings
2(3)
1.2.1 Natural Sources
3(1)
1.2.2 Artificial (Manmade) Sources
3(1)
1.2.3 Effects on Human Health
4(1)
1.3 EMI Hazards for Data Security
5(1)
1.4 Economic Aspects and the Global Market for EMI Shielding
6(1)
1.5 Electromagnetic Compatibility Regulations and Standards
6(4)
1.5.1 International Standards
8(1)
1.5.2 FCC Standards (United States)
9(1)
1.5.3 European Standards
9(1)
1.5.4 Korean Standards
9(1)
1.5.5 Military or Defense Standards
10(1)
1.6 Materials for EMI Shielding
10(4)
1.7 Summary
14(1)
References
15(10)
2 EMI Shielding Mechanism and Conversion Techniques
25(24)
2.1 Introduction
25(1)
2.2 EMI Shielding Mechanisms
25(8)
2.2.1 Shielding Effectiveness (SE)
26(3)
2.2.2 SE/t, SSE, and SSE/t for Lightweight Shielding Materials with Minimal Thicknesses
29(1)
2.2.3 Impact of Different Parameters on Electromagnetic Shielding Effectiveness
29(1)
2.2.3.1 Distance of Shield from the Source
30(1)
2.2.3.2 Frequency of the Incident Electromagnetic Field
30(1)
2.2.3.3 Electrical Conductivity or Sheet Resistance
30(1)
2.2.3.4 Thickness of Shield
31(1)
2.2.3.5 Dielectric Losses
31(1)
2.2.3.6 Magnetic Losses
32(1)
2.3 Microwave Absorption Mechanisms
33(2)
2.4 Scattering Parameter Conversion Method for Calculation of Permeability and Permittivity
35(11)
2.4.1 Transmission/Reflection Method
35(3)
2.4.2 Nicolson-Ross-Weir(NRW) Method
38(2)
2.4.3 NIST Iterative Conversion Method
40(1)
2.4.4 New Non-iterative Conversion Method
41(2)
2.4.5 Short-Circuit Line (SCL) Method
43(3)
2.5 Summary
46(1)
References
47(2)
3 Measurements and Standards
49(20)
3.1 Introduction
49(1)
3.2 EMI Shielding Effectiveness (SE) Measurements
49(4)
3.2.1 Coaxial Transverse Electromagnetic (TEM) Cell Methods
50(1)
3.2.1.1 Coaxial Transmission Line Method
50(1)
3.2.2 Methods Using Antennas or Electric/Magnetic Field Probes
50(1)
3.2.2.1 Open-Ended Coaxial Probe Method
50(1)
3.2.2.2 Shielded Box Method
51(1)
3.2.2.3 Shielded Room Method
51(1)
3.2.2.4 Open-Field or Free Space Method
52(1)
3.3 SE Measurement Systems and Standards
53(2)
3.3.1 SE Calculations Using Experimental Scattering Parameters
53(2)
3.4 Methods and Standards
55(11)
3.4.1 Coaxial TEM Cell Methods
55(1)
3.4.1.1 ASTM ES7-83 Method
56(1)
3.4.1.2 ASTM D4935 Method
57(1)
3.4.1.3 TEM-t Cell Method
58(1)
3.4.1.4 Dual TEM Cell Method
59(1)
3.4.1.5 Split TEM Cell
59(1)
3.4.1.6 Apertured TEM Cell in a Reverberating Chamber
60(1)
3.4.2 Rectangular Waveguide Method
60(1)
3.4.3 Methods Using Antennas or Electric/Magnetic Field Probes
61(1)
3.4.3.1 Testing Methods Based on MIL-STD-285
61(1)
3.4.3.2 Modified Radiation Method Based on MIL-G-83528
62(1)
3.4.3.3 Dual Mode-Stirred Chamber
63(1)
3.4.3.4 IEEE-STD-299
64(1)
3.4.3.5 Free Space Methods
64(2)
3.5 Summary
66(1)
References
67(2)
4 Graphene and Its Derivative for EMI Shielding
69(56)
4.1 Introduction
69(3)
4.2 Graphene for EMI Shielding
72(33)
4.2.1 CVD-Grown Graphene Films with Transparency
72(7)
4.2.2 Graphene Laminate Films
79(6)
4.2.3 Graphene-Polymer Composites
85(9)
4.2.4 Heteroatom-Doped Graphene
94(6)
4.2.5 Graphene Hybrids with Other Carbon Materials
100(5)
4.3 Graphene as a Microwave Absorber
105(11)
4.4 Summary
116(2)
References
118(7)
5 MXenes as EMI Shielding Materials
125(52)
5.1 Introduction
125(6)
5.2 MXenes for EMI Shielding
131(26)
5.2.1 MXene Laminate Films
132(8)
5.2.2 Fiber-Reinforced and Polymeric Composites of MXenes
140(4)
5.2.3 MXene Hybrids with Other Nanomaterials
144(2)
5.2.4 Layer-by-Layer (LbL) Assembly in MXene Composites
146(3)
5.2.5 Porous Structures of MXenes
149(7)
5.2.6 Segregated Structures of MXenes with Polymers
156(1)
5.3 MXenes as Microwave Absorbers
157(8)
5.4 Summary
165(1)
References
166(11)
6 Other 2D Materials
177(24)
6.1 Introduction
177(1)
6.2 2D Materials Beyond Graphene and MXenes
177(20)
6.2.1 Molybdenum Disulfide (MoS2)
177(7)
6.2.2 Tungsten Disulfide (WS2)
184(3)
6.2.3 Tantalum Disulfide (TaS2)
187(2)
6.2.4 Hexagonal Boron Nitride (h-BN)
189(2)
6.2.5 Black Phosphorus (BP)
191(1)
6.2.6 Copper Sulfide (CuS)
191(3)
6.2.7 Metal-Organic Frameworks (MOFs)
194(3)
6.3 Summary i96 References
197(4)
7 Conclusion and Perspectives
201(2)
Index 203
Chong Min Koo, PhD, is the center Head and Principal Research Scientist at Materials Architecturing Research Center in Korea Institute of Science and Technology. He is also Professor at Korea University KU-KIST Graduate School of Converging Science and Technology and University of Science and Technology.

Pradeep Sambyal is Postdoctoral Fellow at Materials Architecturing Research Center at Korea Institute of Science and Technology.

Aamir Iqbal is a PhD Student at Materials Architecturing Research Center, Korea Institute of Science and Technology and University of Science and Technology.

Faisal Shahzad is Assistant Professor, National Center for Nanotechnology, Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS).

Junpyo Hong is a PhD student at Korea Institute of Science and Technology.