Muutke küpsiste eelistusi

E-raamat: Two-Dimensional Riemann Problem in Gas Dynamics

, , (Academia Sinica, Beijing, China)
  • Formaat - PDF+DRM
  • Hind: 227,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The Riemann problem is the most fundamental problem in the entire field of non-linear hyperbolic conservation laws. Since first posed and solved in 1860, great progress has been achieved in the one-dimensional case. However, the two-dimensional case is substantially different. Although research interest in it has lasted more than a century, it has yielded almost no analytical demonstration. It remains a great challenge for mathematicians.
This volume presents work on the two-dimensional Riemann problem carried out over the last 20 years by a Chinese group. The authors explore four models: scalar conservation laws, compressible Euler equations, zero-pressure gas dynamics, and pressure-gradient equations. They use the method of generalized characteristic analysis plus numerical experiments to demonstrate the elementary field interaction patterns of shocks, rarefaction waves, and slip lines. They also discover a most interesting feature for zero-pressure gas dynamics: a new kind of elementary wave appearing in the interaction of slip lines-a weighted Dirac delta shock of the density function.
The Two-Dimensional Riemann Problem in Gas Dynamics establishes the rigorous mathematical theory of delta-shocks and Mach reflection-like patterns for zero-pressure gas dynamics, clarifies the boundaries of interaction of elementary waves, demonstrates the interesting spatial interaction of slip lines, and proposes a series of open problems. With applications ranging from engineering to astrophysics, and as the first book to examine the two-dimensional Riemann problem, this volume will prove fascinating to mathematicians and hold great interest for physicists and engineers.

Arvustused

"A complete and rigorous study" -Mathematical Reviews Promo Copy

Preface vii
Preliminaries
1(10)
Geometry of characteristics and discontinuities
1(6)
Riemann solution geometry of conservation laws
7(4)
Scalar conservation laws
11(35)
One-dimensional scalar conservation laws
11(5)
The generalized characteristic analysis method
16(13)
The four-wave Riemann problem
29(12)
Mach-reflection-like configuration of solutions
41(5)
Zero-pressure gas dynamics
46(111)
Characteristics and bounded discontinuities
49(6)
Simultaneous occurrence of two blowup mechanisms
55(3)
Delta-shocks, generalized Rankine-Hugoniot relations and entropy conditions
58(7)
The one-dimensional Riemann problem
65(8)
The two-dimensional Riemann problem
73(46)
Riemann solutions as the limits of solutions to self similar viscous systems
119(38)
Pressure-gradient equations of the Euler system
157(57)
The one-dimensional Riemann problem
159(5)
Characteristics, discontinuities, elementary waves and classifications
164(15)
The existence of solutions to a transonic pressure-gradient equation in an elliptic region with degenerate datum
179(9)
The two-dimensional Riemann problem and numerical solutions
188(26)
The compressible Euler equations
214(75)
The concepts of characteristics and discontinuities
215(4)
Planar elementary waves and classification
219(15)
PSI approach to irrotational isentropic flow
234(3)
Analysis of Riemann solutions and numerical results
237(39)
Two-dimensional Riemann solutions with axisymmetry
276(13)
References 289(10)
Author index 299
Li, Jiequan; Zhang, Tong.; Yang, Shuli