Muutke küpsiste eelistusi

E-raamat: Dimensions of Affine Deligne-Lusztig Varieties: A New Approach Via Labeled Folded Alcove Walks and Root Operators

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 107,41 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Let $G$ be a reductive group over the field $F=k((t))$, where $k$ is an algebraic closure of a finite field, and let $W$ be the (extended) affine Weyl group of $G$. The associated affine Deligne-Lusztig varieties $X_x(b)$, which are indexed by elements $b \in G(F)$ and $x \in W$, were introduced by Rapoport. Basic questions about the varieties $X_x(b)$ which have remained largely open include when they are nonempty, and if nonempty, their dimension. The authors use techniques inspired by geometric group theory and combinatorial representation theory to address these questions in the case that $b$ is a pure translation, and so prove much of a sharpened version of a conjecture of Gortz, Haines, Kottwitz, and Reuman.

The authors' approach is constructive and type-free, sheds new light on the reasons for existing results in the case that $b$ is basic, and reveals new patterns. Since they work only in the standard apartment of the building for $G(F)$, their results also hold in the $p$-adic context, where they formulate a definition of the dimension of a $p$-adic Deligne-Lusztig set. The authors present two immediate applications of their main results, to class polynomials of affine Hecke algebras and to affine reflection length.
Chapter 1 Introduction
1(16)
1.1 History of the problem
1(3)
1.2 Key ideas in this approach
4(2)
1.3 Summary of main results
6(3)
1.4 Outline of proof and organization of the paper
9(4)
1.5 Applications
13(2)
1.6 Acknowledgements
15(2)
Chapter 2 Preliminaries on Weyl groups, affine buildings, and related notions
17(4)
2.1 Weyl groups and root systems
17(1)
2.2 Hyperplanes, alcoves, and Weyl chambers
18(3)
Chapter 3 Labelings and orientations, galleries, and alcove walks
21(8)
3.1 Labelings and orientations of hyperplanes
21(2)
3.2 Combinatorial galleries
23(3)
3.3 Labeled folded alcove walks
26(3)
Chapter 4 Dimensions of galleries and root operators
29(14)
4.1 The dimension of a folded gallery
29(3)
4.2 Root operators
32(3)
4.3 Counting folds and crossings
35(4)
4.4 Independence of minimal gallery
39(4)
Chapter 5 Affine Deligne-Lusztig varieties and folded galleries
43(8)
5.1 Dimensions of affine Deligne-Lusztig varieties
43(1)
5.2 Connection to folded galleries
44(3)
5.3 Dimension of a p-adic Deligne-Lusztig set
47(1)
5.4 Deligne-Lusztig galleries
47(4)
Chapter 6 Explicit constructions of positively folded galleries
51(12)
6.1 Motivation: the shrunken Weyl chambers
51(1)
6.2 Constructing one positively folded gallery
52(3)
6.3 An infinite family of positively folded galleries
55(8)
Chapter 7 The varieties Xx(1) in the shrunken dominant Weyl chamber
63(6)
7.1 The ω0 position
63(1)
7.2 Arbitrary spherical directions
64(1)
7.3 Dependence upon Theorem 7.5 and comparison with Reuman's criterion
65(4)
Chapter 8 The varieties Xx(1) and Xx(b)
69(10)
8.1 Forward-shifting galleries
69(1)
8.2 Nonemptiness and dimension for arbitrary alcoves
70(3)
8.3 The wq position in the shrunken dominant Weyl chamber
73(1)
8.4 Dimension in the shrunken dominant Weyl chamber
74(1)
8.5 Obstructions to further constructive proofs
75(1)
8.6 Galleries, root operators, crystals, and MV-cycles
76(3)
Chapter 9 Conjugating to other Weyl chambers
79(12)
9.1 Conjugating galleries
79(5)
9.2 Conjugating by simple reflections
84(2)
9.3 Conjugate affine Deligne-Lusztig varieties
86(5)
Chapter 10 Diagram automorphisms
91(4)
Chapter 11 Applications to affine Hecke algebras and affine reflection length
95(4)
11.1 Class polynomials of the affine Hecke algebra
95(2)
11.2 Reflection length in affine Weyl groups
97(2)
Bibliography 99
Elizabeth Milicevic, Haverford College, Pennsylvania.

Petra Schwer, Karlsruhe Institute of Technology, Germany.

Anne Thomas, University of Sydney, Australia.