Muutke küpsiste eelistusi

E-raamat: Dirac Matter

  • Formaat - PDF+DRM
  • Hind: 92,61 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This fifteenth volume of the Poincare Seminar Series, Dirac Matter, describes the surprising resurgence, as a low-energy effective theory of conducting electrons in many condensed matter systems, including graphene and topological insulators, of the famous equation originally invented by P.A.M. Dirac for relativistic quantummechanics. In five highly pedagogical articles, as befits their origin in lectures to a broad scientific audience, this book explains why Dirac matters. Highlights include the detailed "Graphene and Relativistic Quantum Physics", written by the experimental pioneer, Philip Kim, and devoted to graphene, a formof carbon crystallized in a two-dimensional hexagonal lattice, from its discovery in 2004-2005 by the future Nobel prize winners Kostya Novoselov and Andre Geim to the so-called relativistic quantum Hall effect; the review entitled "Dirac Fermions in Condensed Matter and Beyond", written by two prominent theoreticians, Mark Goerbig and Gilles Montambaux

, who consider many other materials than graphene, collectively known as "Dirac matter", and offer a thorough description of the merging transition of Dirac cones that occurs in the energy spectrum, in various experiments involving stretching of the microscopic hexagonal lattice; the third contribution, entitled "Quantum Transport in Graphene: Impurity Scattering as a Probe of the DiracSpectrum", given by Hélène Bouchiat, a leading experimentalist in mesoscopic physics, with Sophie Guéron and Chuan Li, shows how measuring electrical transport, in particular magneto-transport in real graphene devices - contaminated by impurities and hence exhibiting a diffusive regime - allows one to deeply probe the Dirac nature of electrons. The last two contributions focus on topological insulators; in the authoritative "Experimental Signatures of Topological Insulators", Laurent Lévy reviews recent experimental progress in the physics of mercury-telluride samples under strain, which demonstra

tes that the surface of a three-dimensional topological insulator hosts a two-dimensional massless Dirac metal; the illuminating final contribution by David Carpentier, entitled "Topology of Bands in Solids: From Insulators to Dirac Matter", provides a geometric description of Bloch wave functions in terms of Berry phases and parallel transport, and of their topological classification in terms of invariants such as Chern numbers, and ends with a perspective on three-dimensional semi-metals as described by the Weyl equation. This book will be of broad general interest to physicists, mathematicians, and historians of science.

Philip Kim: Graphene and Relativistic Quantum Physics.- Mark Goerbig and Gilles Montambaux : Dirac Fermions in Condensed Matter and Beyond.- Chuan Li, Sophie Guéron, Hélène Bouchiat : Quantum Transport in Graphene : Impurity Scattering as a Probe of the Dirac Spectrum.-Laurent Lévy : Experimental Signatures of Topological Insulators.- David Carpentier :Topology of Bands in Solids: From Insulators to Dirac Matter.
Foreword ix
Graphene and Relativistic Quantum Physics
Philip Kim
1 Introduction
1(1)
2 Early experiment
2(2)
3 Pseudospin chirality in graphene
4(3)
4 Berry phase in magneto-oscillations
7(7)
5 Pseudospin and Klein tunneling in graphene
14(5)
6 Conclusions
19(6)
References
21(4)
Dirac Fermions in Condensed Matter and Beyond
Mark Goerbig
Gilles Montambaux
1 Introduction
25(1)
2 Emergence of Dirac fermions in a generic two-band model
26(2)
3 Dirac fermions in tight-binding models and fermion doubling
28(4)
4 Dirac fermions in a magnetic field
32(5)
5 Motion and merging of time-reversal-symmetric Dirac points
37(3)
6 Manipulation of Dirac points in artificial graphenes
40(6)
7 More Dirac points
46(3)
8 Conclusions
49(6)
References
51(4)
Quantum Transport in Graphene: Impurity Scattering as a Probe of the Dirac Spectrum
Chuan Li
Sophie Gueron
Helene Bouchiat
1 Introduction
55(2)
2 Impurity scattering in graphene: determination of the transport and elastic scattering times
57(5)
3 Quantum transport: proximity induced superconductivity and specular Andreev reflection
62(5)
4 Perspectives: inducing new functionalities in graphene by creating scattering centers
67(4)
5 Conclusion
71(4)
References
72(3)
Experimental Signatures of Topological Insulators
Laurent Levy
1 Introduction
75(4)
2 Bulked gap in strained mercury telluride
79(1)
3 ARPES spectra and surface mercury telluride
80(7)
4 Topological signatures in transport experiments
87(5)
5 Conclusions
92(3)
References
93(2)
Topology of Bands in Solids: From Insulators to Dirac Matter
David Carpentier
1 Introduction
95(2)
2 Bloch theory
97(2)
3 Geometrical phase and parallel transport
99(8)
4 Topological properties of a valence band in an insulator
107(13)
5 From insulators to semi-metals
120(5)
6 Conclusion and perspectives
125
Appendix: Two useful trivializations of the Bloch bundle
125(2)
References
127