Introduction |
|
xi | |
|
PART ONE BOHR'S PROBLEM AND COMPLEX ANALYSIS ON POLYDISCS |
|
|
1 | (336) |
|
1 The Absolute Convergence Problem |
|
|
3 | (34) |
|
1.1 Convergence of Dirichlet Series |
|
|
4 | (14) |
|
1.2 Statement of the Problem |
|
|
18 | (3) |
|
|
21 | (8) |
|
|
29 | (5) |
|
|
34 | (3) |
|
2 Holomorphic Functions on Polydiscs |
|
|
37 | (39) |
|
2.1 Finitely Many Variables |
|
|
39 | (7) |
|
2.2 Infinitely Many Variables |
|
|
46 | (8) |
|
|
54 | (4) |
|
2.4 Homogeneous Polynomials |
|
|
58 | (3) |
|
2.5 Taylor Series Expansion |
|
|
61 | (3) |
|
2.6 Multilinear Forms and Polarization |
|
|
64 | (6) |
|
2.7 Coefficients and Indexing Sets |
|
|
70 | (5) |
|
|
75 | (1) |
|
|
76 | (17) |
|
3.1 The Fundamental Lemma |
|
|
78 | (4) |
|
3.2 Finitely Many Variables and Primes |
|
|
82 | (3) |
|
3.3 Infinitely Many Variables and Primes |
|
|
85 | (4) |
|
|
89 | (1) |
|
|
90 | (3) |
|
4 Solution to the Problem |
|
|
93 | (18) |
|
4.1 The 2-Homogeneous Case -- Toeplitz Example |
|
|
94 | (5) |
|
4.2 The m-Homogeneous Case |
|
|
99 | (7) |
|
4.3 Proof of the Highlight |
|
|
106 | (2) |
|
|
108 | (2) |
|
|
110 | (1) |
|
5 The Fourier Analysis Point of View |
|
|
111 | (18) |
|
5.1 Integration on the Poly torus |
|
|
114 | (3) |
|
5.2 Poisson Approximation |
|
|
117 | (7) |
|
5.3 Proof of the Highlight |
|
|
124 | (2) |
|
|
126 | (2) |
|
|
128 | (1) |
|
|
129 | (24) |
|
6.1 Littlewood Inequality |
|
|
133 | (3) |
|
6.2 Khinchin-Steinhaus Inequalities |
|
|
136 | (3) |
|
6.3 Blei Inequality and Multilinear Mixed Inequality |
|
|
139 | (3) |
|
6.4 Multilinear Bohnenblust-Hille Inequality |
|
|
142 | (1) |
|
6.5 Polynomial Bohnenblust-Hille Inequality |
|
|
143 | (1) |
|
|
144 | (6) |
|
|
150 | (3) |
|
|
153 | (28) |
|
|
157 | (3) |
|
7.2 Rademacher Random Polynomials |
|
|
160 | (2) |
|
7.3 Proof of the Kahane-Salem-Zygmund Inequality |
|
|
162 | (3) |
|
7.4 Kahane-Salem-Zygmund Inequality for Expectations |
|
|
165 | (5) |
|
7.5 Rademacher Versus Steinhaus Random Variables |
|
|
170 | (3) |
|
7.6 Almost Sure Sign Convergence |
|
|
173 | (7) |
|
|
180 | (1) |
|
8 Multidimensional Bohr Radii |
|
|
181 | (24) |
|
8.1 Bohr Power Series Theorem |
|
|
182 | (3) |
|
|
185 | (2) |
|
|
187 | (1) |
|
|
188 | (10) |
|
8.5 Proof of the Highlight |
|
|
198 | (1) |
|
|
199 | (5) |
|
|
204 | (1) |
|
9 Strips under the Microscope |
|
|
205 | (25) |
|
|
210 | (11) |
|
9.2 Proofs of the Highlights |
|
|
221 | (8) |
|
|
229 | (1) |
|
10 Monomial Convergence of Holomorphic Functions |
|
|
230 | (38) |
|
|
232 | (7) |
|
|
239 | (3) |
|
10.3 Sets of Monomial Convergence for Polynomials |
|
|
242 | (5) |
|
|
247 | (3) |
|
10.5 The Set of Monomial Convergence for Holomorphic Functions |
|
|
250 | (10) |
|
|
260 | (3) |
|
10.7 Bohnenblust-Hille Constants versus Bohr Radii |
|
|
263 | (3) |
|
|
266 | (2) |
|
11 Hardy Spaces of Dirichlet Series |
|
|
268 | (21) |
|
11.1 A Hilbert Space of Dirichlet Series |
|
|
269 | (5) |
|
11.2 Hardy Spaces of Dirichlet Series |
|
|
274 | (5) |
|
|
279 | (6) |
|
|
285 | (3) |
|
|
288 | (1) |
|
12 Bohr's Problem in Hardy Spaces |
|
|
289 | (26) |
|
|
289 | (7) |
|
|
296 | (3) |
|
|
299 | (8) |
|
12.4 Sets of Monomial Convergence |
|
|
307 | (5) |
|
|
312 | (2) |
|
|
314 | (1) |
|
13 Hardy Spaces and Holomorphy |
|
|
315 | (22) |
|
13.1 Brothers Riesz Theorem |
|
|
318 | (4) |
|
13.2 Cole-Gamelin Inequality |
|
|
322 | (4) |
|
13.3 Hilbert's Criterion in Hardy Spaces |
|
|
326 | (4) |
|
13.4 Proof of the Highlight and Optimality |
|
|
330 | (4) |
|
|
334 | (3) |
|
PART TWO ADVANCED TOOLBOX |
|
|
337 | (136) |
|
14 Selected Topics on Banach Space Theory |
|
|
339 | (12) |
|
|
339 | (1) |
|
|
340 | (4) |
|
|
344 | (3) |
|
|
347 | (3) |
|
|
350 | (1) |
|
15 Infinite Dimensional Holomorphy |
|
|
351 | (59) |
|
|
352 | (2) |
|
15.2 Holomorphy in Finite Dimensions |
|
|
354 | (9) |
|
15.3 Multilinear Mappings |
|
|
363 | (3) |
|
|
366 | (4) |
|
15.5 Holomorphy on Banach Sequence Spaces |
|
|
370 | (9) |
|
|
379 | (5) |
|
15.7 Taylor Series Expansion |
|
|
384 | (3) |
|
|
387 | (7) |
|
15.9 Series Representation |
|
|
394 | (3) |
|
15.10 Back to Analyticity |
|
|
397 | (1) |
|
15.11 Density of the Monomials |
|
|
398 | (8) |
|
15.12 Distinguished Maximum Modulus Theorem |
|
|
406 | (2) |
|
|
408 | (2) |
|
|
410 | (25) |
|
16.1 Linear Algebra of Tensor Products |
|
|
410 | (5) |
|
|
415 | (3) |
|
|
418 | (5) |
|
16.4 Linear Algebra of Symmetric Tensor Products |
|
|
423 | (3) |
|
16.5 The Two Natural Symmetric Norms |
|
|
426 | (5) |
|
16.6 Duals of Tensor Products |
|
|
431 | (2) |
|
16.7 How Is All of This Related with Our Stuff? |
|
|
433 | (1) |
|
|
434 | (1) |
|
17 Probabilistic Tools II |
|
|
435 | (38) |
|
|
435 | (10) |
|
|
445 | (16) |
|
|
461 | (10) |
|
|
471 | (2) |
|
PART THREE REPLACING POLYDISCS BY OTHER BALLS |
|
|
473 | (92) |
|
18 Hardy-Littlewood Inequality |
|
|
475 | (11) |
|
18.1 The New Mixed Inequality |
|
|
478 | (4) |
|
18.2 Extension of the Inequality |
|
|
482 | (2) |
|
|
484 | (2) |
|
19 Bohr Radii in (p Spaces and Unconditionally |
|
|
486 | (20) |
|
|
490 | (1) |
|
|
491 | (1) |
|
|
492 | (6) |
|
19.4 Proof of the Highlight |
|
|
498 | (1) |
|
19.5 The Arithmetic Bohr Radius |
|
|
499 | (5) |
|
|
504 | (2) |
|
20 Monomial Convergence in Banach Sequence Spaces |
|
|
506 | (25) |
|
|
507 | (2) |
|
|
509 | (6) |
|
20.3 Holomorphic Functions on Reinhardt Domains |
|
|
515 | (8) |
|
20.4 Bounded Holomorphic Functions on Btp |
|
|
523 | (3) |
|
|
526 | (4) |
|
|
530 | (1) |
|
|
531 | (24) |
|
21.1 The Greediness Principle |
|
|
534 | (9) |
|
21.2 Separability Dichotomy |
|
|
543 | (5) |
|
21.3 The Gordon-Lewis Cycle |
|
|
548 | (4) |
|
|
552 | (1) |
|
|
553 | (2) |
|
|
555 | (10) |
|
22.1 Gordon-Lewis Versus Projection Constants |
|
|
555 | (3) |
|
22.2 Estimates for the Projection Constant |
|
|
558 | (1) |
|
22.3 Second Proof for the Lower Bounds of Bohr Radii |
|
|
559 | (1) |
|
22.4 Bohr Radii in Tensor Products |
|
|
559 | (5) |
|
|
564 | (1) |
|
PART FOUR VECTOR-VALUED ASPECTS |
|
|
565 | (99) |
|
23 Functions of One Variable |
|
|
567 | (17) |
|
|
571 | (2) |
|
23.2 Maximal Inequalities |
|
|
573 | (5) |
|
23.3 Nontangential Limits |
|
|
578 | (1) |
|
23.4 Outer Functions, Factorization and the Proof |
|
|
579 | (3) |
|
23.5 ARNP of Spaces of Bochner Integrable Functions |
|
|
582 | (1) |
|
|
583 | (1) |
|
24 Vector-Valued Hardy Spaces |
|
|
584 | (28) |
|
24.1 Hardy Spaces of Vector-Valued Functions |
|
|
585 | (5) |
|
24.2 Hardy Spaces of Vector-Valued Dirichlet Series |
|
|
590 | (2) |
|
24.3 Horizontal Translation -- Vector-Valued |
|
|
592 | (4) |
|
24.4 Cone Summing Operators |
|
|
596 | (2) |
|
24.5 Operators Versus Dirichlet Series |
|
|
598 | (3) |
|
24.6 Brothers Riesz Theorem -- Vector-Valued |
|
|
601 | (4) |
|
24.7 Vector-Valued Holomorphic Functions and Dirichlet Series |
|
|
605 | (6) |
|
|
611 | (1) |
|
|
612 | (33) |
|
|
612 | (3) |
|
25.2 Cotype and Polynomials |
|
|
615 | (3) |
|
25.3 A Polynomial Kahane Inequality |
|
|
618 | (4) |
|
25.4 Hypercontractive Constants |
|
|
622 | (7) |
|
25.5 Polynomially Summing Operators |
|
|
629 | (9) |
|
|
638 | (5) |
|
|
643 | (2) |
|
26 Bohr's Problem for Vector-Valued Dirichlet Series |
|
|
645 | (19) |
|
26.1 Abscissas and Strips |
|
|
648 | (2) |
|
26.2 Sets of Monomial Convergence |
|
|
650 | (1) |
|
26.3 Proof of the Highlight |
|
|
651 | (4) |
|
|
655 | (3) |
|
26.5 Where Have All the Polynomials Gone? |
|
|
658 | (5) |
|
|
663 | (1) |
References |
|
664 | (13) |
Symbol Index |
|
677 | (1) |
Subject Index |
|
678 | |