Muutke küpsiste eelistusi

E-raamat: Dirichlet Series and Holomorphic Functions in High Dimensions

, (Carl V. Ossietzky Universität Oldenburg, Germany), (Universitat de València, Spain), (Universitat de València, Spain)
  • Formaat: PDF+DRM
  • Sari: New Mathematical Monographs
  • Ilmumisaeg: 08-Aug-2019
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108755764
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 142,03 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: New Mathematical Monographs
  • Ilmumisaeg: 08-Aug-2019
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108755764
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Over 100 years ago Harald Bohr identified a deep problem about the convergence of Dirichlet series. In recent years there has been a substantial revival of interest in this topic, and the goal of this book is to describe in detail some of its key elements to a wide audience.

Over 100 years ago Harald Bohr identified a deep problem about the convergence of Dirichlet series, and introduced an ingenious idea relating Dirichlet series and holomorphic functions in high dimensions. Elaborating on this work, almost twnety years later Bohnenblust and Hille solved the problem posed by Bohr. In recent years there has been a substantial revival of interest in the research area opened up by these early contributions. This involves the intertwining of the classical work with modern functional analysis, harmonic analysis, infinite dimensional holomorphy and probability theory as well as analytic number theory. New challenging research problems have crystallized and been solved in recent decades. The goal of this book is to describe in detail some of the key elements of this new research area to a wide audience. The approach is based on three pillars: Dirichlet series, infinite dimensional holomorphy and harmonic analysis.

Arvustused

'Dirichlet series have been studied for well over a century and still form an integral part of analytic number theory The purpose of this text is to illustrate the connections between the Dirichlet series per se and the fields just mentioned, e.g., both functional and harmonic analysis The authors succeed in transferring important concepts and theorems of analytic function theory, in finitely many variables, to the theory in infinitely many variables.' J. T. Zerger, Choice

Muu info

Using contemporary concepts, this book describes the interaction between Dirichlet series and holomorphic functions in high dimensions.
Introduction xi
PART ONE BOHR'S PROBLEM AND COMPLEX ANALYSIS ON POLYDISCS
1(336)
1 The Absolute Convergence Problem
3(34)
1.1 Convergence of Dirichlet Series
4(14)
1.2 Statement of the Problem
18(3)
1.3 Bohr's Theorem
21(8)
1.4 The Banach Space H∞
29(5)
1.5 Notes/Remarks
34(3)
2 Holomorphic Functions on Polydiscs
37(39)
2.1 Finitely Many Variables
39(7)
2.2 Infinitely Many Variables
46(8)
2.3 Hilbert's Criterion
54(4)
2.4 Homogeneous Polynomials
58(3)
2.5 Taylor Series Expansion
61(3)
2.6 Multilinear Forms and Polarization
64(6)
2.7 Coefficients and Indexing Sets
70(5)
2.8 Notes/Remarks
75(1)
3 Bohr's Vision
76(17)
3.1 The Fundamental Lemma
78(4)
3.2 Finitely Many Variables and Primes
82(3)
3.3 Infinitely Many Variables and Primes
85(4)
3.4 The Homogeneous Case
89(1)
3.5 Notes/Remarks
90(3)
4 Solution to the Problem
93(18)
4.1 The 2-Homogeneous Case -- Toeplitz Example
94(5)
4.2 The m-Homogeneous Case
99(7)
4.3 Proof of the Highlight
106(2)
4.4 Algebra appendix
108(2)
4.5 Notes/Remarks
110(1)
5 The Fourier Analysis Point of View
111(18)
5.1 Integration on the Poly torus
114(3)
5.2 Poisson Approximation
117(7)
5.3 Proof of the Highlight
124(2)
5.4 Fejer Approximation
126(2)
5.5 Notes/Remarks
128(1)
6 Inequalities I
129(24)
6.1 Littlewood Inequality
133(3)
6.2 Khinchin-Steinhaus Inequalities
136(3)
6.3 Blei Inequality and Multilinear Mixed Inequality
139(3)
6.4 Multilinear Bohnenblust-Hille Inequality
142(1)
6.5 Polynomial Bohnenblust-Hille Inequality
143(1)
6.6 Constants
144(6)
6.7 Notes/Remarks
150(3)
7 Probabilistic Tools I
153(28)
7.1 Bernstein Inequality
157(3)
7.2 Rademacher Random Polynomials
160(2)
7.3 Proof of the Kahane-Salem-Zygmund Inequality
162(3)
7.4 Kahane-Salem-Zygmund Inequality for Expectations
165(5)
7.5 Rademacher Versus Steinhaus Random Variables
170(3)
7.6 Almost Sure Sign Convergence
173(7)
7.7 Notes/Remarks
180(1)
8 Multidimensional Bohr Radii
181(24)
8.1 Bohr Power Series Theorem
182(3)
8.2 Reduction
185(2)
8.3 Upper Estimate
187(1)
8.4 Inequalities II
188(10)
8.5 Proof of the Highlight
198(1)
8.6 A Finer Argument
199(5)
8.7 Notes/Remarks
204(1)
9 Strips under the Microscope
205(25)
9.1 Concepts
210(11)
9.2 Proofs of the Highlights
221(8)
9.3 Notes/Remarks
229(1)
10 Monomial Convergence of Holomorphic Functions
230(38)
10.1 A Starting Point
232(7)
10.2 Bohr's Approach
239(3)
10.3 Sets of Monomial Convergence for Polynomials
242(5)
10.4 Inequalities III
247(3)
10.5 The Set of Monomial Convergence for Holomorphic Functions
250(10)
10.6 Some Consequences
260(3)
10.7 Bohnenblust-Hille Constants versus Bohr Radii
263(3)
10.8 Notes/Remarks
266(2)
11 Hardy Spaces of Dirichlet Series
268(21)
11.1 A Hilbert Space of Dirichlet Series
269(5)
11.2 Hardy Spaces of Dirichlet Series
274(5)
11.3 Embedding
279(6)
11.4 Horizontal Limits
285(3)
11.5 Notes/Remarks
288(1)
12 Bohr's Problem in Hardy Spaces
289(26)
12.1 Hp-Abscissas
289(7)
12.2 Hp-Strips
296(3)
12.3 Helson Inequality
299(8)
12.4 Sets of Monomial Convergence
307(5)
12.5 Multipliers
312(2)
12.6 Notes/Remarks
314(1)
13 Hardy Spaces and Holomorphy
315(22)
13.1 Brothers Riesz Theorem
318(4)
13.2 Cole-Gamelin Inequality
322(4)
13.3 Hilbert's Criterion in Hardy Spaces
326(4)
13.4 Proof of the Highlight and Optimality
330(4)
13.5 Notes/Remarks
334(3)
PART TWO ADVANCED TOOLBOX
337(136)
14 Selected Topics on Banach Space Theory
339(12)
14.1 Some Principles
339(1)
14.2 Bases
340(4)
14.3 Operators
344(3)
14.4 Cotype
347(3)
14.5 Notes/Remarks
350(1)
15 Infinite Dimensional Holomorphy
351(59)
15.1 Two Basics
352(2)
15.2 Holomorphy in Finite Dimensions
354(9)
15.3 Multilinear Mappings
363(3)
15.4 Polynomials
366(4)
15.5 Holomorphy on Banach Sequence Spaces
370(9)
15.6 Gateaux Holomorphy
379(5)
15.7 Taylor Series Expansion
384(3)
15.8 Weak Holomorphy
387(7)
15.9 Series Representation
394(3)
15.10 Back to Analyticity
397(1)
15.11 Density of the Monomials
398(8)
15.12 Distinguished Maximum Modulus Theorem
406(2)
15.13 Notes/Remarks
408(2)
16 Tensor Products
410(25)
16.1 Linear Algebra of Tensor Products
410(5)
16.2 The Projective Norm
415(3)
16.3 The Injective Norm
418(5)
16.4 Linear Algebra of Symmetric Tensor Products
423(3)
16.5 The Two Natural Symmetric Norms
426(5)
16.6 Duals of Tensor Products
431(2)
16.7 How Is All of This Related with Our Stuff?
433(1)
16.8 Notes/Remarks
434(1)
17 Probabilistic Tools II
435(38)
17.1 Covering Approach
435(10)
17.2 Entropy Approach
445(16)
17.3 Gaussian Approach
461(10)
17.4 Notes/Remarks
471(2)
PART THREE REPLACING POLYDISCS BY OTHER BALLS
473(92)
18 Hardy-Littlewood Inequality
475(11)
18.1 The New Mixed Inequality
478(4)
18.2 Extension of the Inequality
482(2)
18.3 Notes/Remarks
484(2)
19 Bohr Radii in (p Spaces and Unconditionally
486(20)
19.1 Reduction
490(1)
19.2 Unconditionality
491(1)
19.3 Constants
492(6)
19.4 Proof of the Highlight
498(1)
19.5 The Arithmetic Bohr Radius
499(5)
19.6 Notes/Remarks
504(2)
20 Monomial Convergence in Banach Sequence Spaces
506(25)
20.1 Simple Tools
507(2)
20.2 Polynomials
509(6)
20.3 Holomorphic Functions on Reinhardt Domains
515(8)
20.4 Bounded Holomorphic Functions on Btp
523(3)
20.5 Lempert Problem
526(4)
20.6 Notes/Remarks
530(1)
21 Dineen's Problem
531(24)
21.1 The Greediness Principle
534(9)
21.2 Separability Dichotomy
543(5)
21.3 The Gordon-Lewis Cycle
548(4)
21.4 Final Argument
552(1)
21.5 Notes/Remarks
553(2)
22 Back to Bohr Radii
555(10)
22.1 Gordon-Lewis Versus Projection Constants
555(3)
22.2 Estimates for the Projection Constant
558(1)
22.3 Second Proof for the Lower Bounds of Bohr Radii
559(1)
22.4 Bohr Radii in Tensor Products
559(5)
22.5 Notes/Remarks
564(1)
PART FOUR VECTOR-VALUED ASPECTS
565(99)
23 Functions of One Variable
567(17)
23.1 Harmonicity
571(2)
23.2 Maximal Inequalities
573(5)
23.3 Nontangential Limits
578(1)
23.4 Outer Functions, Factorization and the Proof
579(3)
23.5 ARNP of Spaces of Bochner Integrable Functions
582(1)
23.6 Notes/Remarks
583(1)
24 Vector-Valued Hardy Spaces
584(28)
24.1 Hardy Spaces of Vector-Valued Functions
585(5)
24.2 Hardy Spaces of Vector-Valued Dirichlet Series
590(2)
24.3 Horizontal Translation -- Vector-Valued
592(4)
24.4 Cone Summing Operators
596(2)
24.5 Operators Versus Dirichlet Series
598(3)
24.6 Brothers Riesz Theorem -- Vector-Valued
601(4)
24.7 Vector-Valued Holomorphic Functions and Dirichlet Series
605(6)
24.8 Notes/Remarks
611(1)
25 Inequalities IV
612(33)
25.1 Gateway
612(3)
25.2 Cotype and Polynomials
615(3)
25.3 A Polynomial Kahane Inequality
618(4)
25.4 Hypercontractive Constants
622(7)
25.5 Polynomially Summing Operators
629(9)
25.6 Back to Square One
638(5)
25.7 Notes/Remarks
643(2)
26 Bohr's Problem for Vector-Valued Dirichlet Series
645(19)
26.1 Abscissas and Strips
648(2)
26.2 Sets of Monomial Convergence
650(1)
26.3 Proof of the Highlight
651(4)
26.4 The lr-Case
655(3)
26.5 Where Have All the Polynomials Gone?
658(5)
26.6 Notes/Remarks
663(1)
References 664(13)
Symbol Index 677(1)
Subject Index 678
Andreas Defant is Professor of Mathematics at Carl V. Ossietzky Universität Oldenburg, Germany. Domingo García is Professor of Mathematics at Universitat de València, Spain. Manuel Maestre is Full Professor of Mathematics at Universitat de València, Spain. Pablo Sevilla-Peris is Associate Professor of Mathematics at Universitat Politècnica de València, Spain.