Muutke küpsiste eelistusi

E-raamat: Discovery Science: 16th International Conference, DS 2013, Singapore, October 6-9, 2013, Proceedings

  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the proceedings of the 16th International Conference on Discovery Science, DS 2013, held in Singapore in October 2013, and co-located with the International Conference on Algorithmic Learning Theory, ALT 2013. The 23 papers presented in this volume were carefully reviewed and selected from 52 submissions. They cover recent advances in the development and analysis of methods of automatic scientific knowledge discovery, machine learning, intelligent data analysis, and their application to knowledge discovery.
Mixture Models from Multiresolution 0-1 Data.- Model Tree Ensembles for Modeling Dynamic Systems.- Fast and Scalable Image Retrieval Using Predictive Clustering Trees.- Avoiding Anomalies in Data Stream Learning.- Generalizing from Example Clusters.- Clustering Based Active Learning for Evolving Data Streams.- Robust Crowd Labeling Using Little Expertise.- A New Approach to String Pattern Mining with Approximate Match.- OntoDM-KDD: Ontology for Representing the Knowledge Discovery Process.- A Wordification Approach to Relational Data Mining.- Multi-interval Discretization of Continuous Attributes for Label Ranking.- Identifying Super-Mediators of Information Diffusion in Social Networks.- SM2D: A Modular Knowledge Discovery Approach Applied to Hydrological Forecasting.- A Dynamic Programming Algorithm for Learning Chain Event Graphs.- Mining Interesting Patterns in Multi-relational Data with N-ary Relationships.- Learning Hierarchical Multi-label Classification Trees from Network Data.- A Density-Based Backward Approach to Isolate Rare Events in Large-Scale Applications.- Inductive Process Modeling of Rab5-Rab7 Conversion in Endocytosis.- Fast Compression of Large-Scale Hypergraphs for Solving Combinatorial Problems.- Semantic Data Mining of Financial News Articles.- Polynomial Delay and Space Discovery of Connected and Acyclic Sub-hypergraphs in a Hypergraph.- Hyperlink Prediction in Hypernetworks Using Latent Social Features.- Extracting Opinionated (Sub)Features from a Stream of Product Reviews.