Muutke küpsiste eelistusi

E-raamat: Discrete-continuum Coupling Method to Simulate Highly Dynamic Multi-scale Problems: Simulation of Laser-induced Damage in Silica Glass, Volume 2

  • Formaat: PDF+DRM
  • Ilmumisaeg: 02-Oct-2015
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119119296
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 171,60 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 02-Oct-2015
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119119296
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Complex behavior models (plasticity, crack, visco-elascticity) are facing several theoretical difficulties in determining the behavior law at the continuous (macroscopic) scale. When homogenization fails to give the right behavior law, a solution is to simulate the material at a mesoscale using the discrete element model (DEM) in order to directly simulate a set of discrete properties that are responsible for the macroscopic behavior. Originally, the discrete element model was developed for granular material.

This book, the second in the Discrete Element Model and Simulation of Continuous Materials Behavior set of books, shows how to choose the adequate coupling parameters to avoid spurious wave reflection and to allow the passage of all the dynamic information both from the fine to the coarse model and vice versa. The authors demonstrate the coupling method to simulate a highly nonlinear dynamical problem: the laser shock processing of silica glass.

 

List of Figures
ix
List of Tables
xv
Preface xvii
Introduction xix
Part 1 Discrete-Continuum Coupling Method to Model Highly Dynamic Multi-Scale Problems
1(88)
Chapter 1 State of the Art: Concurrent Discrete-continuum Coupling
3(24)
1.1 Introduction
3(1)
1.2 Coupling challenges
4(6)
1.2.1 Dissimilar variables due to different mechanical bases
4(1)
1.2.2 Wave reflections due to different analysis scales
4(6)
1.3 Coupling techniques
10(15)
1.3.1 Edge-to-edge coupling methods
11(4)
1.3.2 Bridging domain coupling methods
15(4)
1.3.3 Bridging-scale coupling methods
19(4)
1.3.4 Other coupling techniques
23(2)
1.4 Conclusion
25(2)
Chapter 2 Choice of the Continuum Method to be Coupled with the Discrete Element Method
27(26)
2.1 Introduction
27(1)
2.2 Classification of the continuum methods
28(10)
2.2.1 Grid-based methods
28(5)
2.2.2 Meshless methods
33(5)
2.3 Choice of continuum method
38(3)
2.4 The constrained natural element method
41(10)
2.4.1 Natural neighbor interpolation
41(7)
2.4.2 Visibility criterion
48(1)
2.4.3 Constrained natural neighbor interpolation
48(1)
2.4.4 Numerical integration
49(2)
2.5 Conclusion
51(2)
Chapter 3 Development of Discrete-Continuum Coupling Method Between DEM and CNEM
53(36)
3.1 Introduction
53(1)
3.2 Discrete-continuum coupling method: DEM-CNEM
54(13)
3.2.1 DEM-CNEM coupling formulation
54(5)
3.2.2 Discretization and spatial integration
59(3)
3.2.3 Time integration
62(1)
3.2.4 Algorithmic
63(3)
3.2.5 Implementation
66(1)
3.3 Parametric study of the coupling parameters
67(16)
3.3.1 Influence of the junction parameter l
71(2)
3.3.2 Influence of the weight function α
73(6)
3.3.3 Influence of the approximated mediator space M
79(1)
3.3.4 Influence of the width of the bridging zone Lb
79(2)
3.3.5 Dependence between LB and M
81(2)
3.4 Choice of the coupling parameters in practice
83(1)
3.5 Validation
84(1)
3.6 Conclusion
85(4)
Part 2 Application: Simulation of Laser Shock Processing of Silica Glass
89(76)
Chapter 4 Some Fundamental Concepts in Laser Shock Processing
91(30)
4.1 Introduction
91(1)
4.2 Theory of laser--matter interaction: high pressure generation
92(17)
4.2.1 Generation of shock wave by laser ablation
93(3)
4.2.2 Shock wave propagation in materials
96(10)
4.2.3 Laser-induced damage in materials
106(3)
4.3 Mechanical response of silica glass under high pressure
109(10)
4.3.1 Silica glass response under quasi-static hydrostatic compression
109(5)
4.3.2 Silica glass response under shock compression
114(4)
4.3.3 Summary of the silica glass response under high pressure
118(1)
4.4 Conclusion
119(2)
Chapter 5 Modeling of the Silica Glass Mechanical Behavior
121(30)
5.1 Introduction
121(1)
5.2 Mechanical behavior modeling
122(25)
5.2.1 Modeling assumption
123(1)
5.2.2 Cohesive beam model
124(3)
5.2.3 Quasi-static calibration and validation
127(12)
5.2.4 Dynamic calibration and validation
139(8)
5.3 Brittle fracture modeling
147(2)
5.4 Conclusion
149(2)
Chapter 6 Simulation of Laser Shock Processing of Silica Glass
151(14)
6.1 Introduction
151(2)
6.2 LSP test
153(2)
6.3 LSP model
155(4)
6.4 Results
159(4)
6.5 Conclusion
163(2)
Conclusion 165(6)
Bibliography 171(14)
Index 185
Mohamed Jebahi is a post-doctoral researcher at the Institute of Mechanics and Engineering of Bordeaux, France, and Laval University, Quebec, Canada.

Frédéric Dau is Assistant Professor at Ecole Nationale Supérieure dArts et Métiers, ParisTech, France.

Jean-Luc Charlesis Assistant Professor at Ecole Nationale Supérieure d&'Arts et Métiers, ParisTech, France.

Ivan Iordanoff is Director of Research and Innovation at Ecole Nationale Supérieure d'Arts et Métiers, ParisTech, France.