|
|
1 | (8) |
|
|
1 | (1) |
|
1.2 History and three mainstays |
|
|
2 | (1) |
|
|
2 | (5) |
|
|
3 | (1) |
|
|
4 | (1) |
|
1.3.3 Time and algebraic models |
|
|
5 | (2) |
|
1.4 Organization of the book |
|
|
7 | (2) |
|
|
9 | (44) |
|
|
9 | (5) |
|
|
9 | (2) |
|
2.1.2 Physical point of view |
|
|
11 | (1) |
|
|
12 | (2) |
|
|
14 | (3) |
|
2.3 Models and principle of the approach |
|
|
17 | (8) |
|
2.3.1 P-time event graphs |
|
|
17 | (4) |
|
|
21 | (2) |
|
2.3.3 Principle of the approach (example 2) |
|
|
23 | (2) |
|
2.4 Analysis in the "static" case |
|
|
25 | (3) |
|
|
28 | (3) |
|
2.6 Extremal acceptable trajectories by series of matrices |
|
|
31 | (5) |
|
2.6.1 Lowest state trajectory |
|
|
32 | (3) |
|
2.6.2 Greatest state trajectory |
|
|
35 | (1) |
|
|
36 | (14) |
|
|
41 | (3) |
|
2.7.2 Maximal horizon of temporal consistency |
|
|
44 | (3) |
|
2.7.3 Date of the first token deaths |
|
|
47 | (1) |
|
2.7.4 Computational complexity |
|
|
48 | (2) |
|
|
50 | (3) |
|
|
53 | (26) |
|
|
53 | (2) |
|
3.2 Problem without optimization |
|
|
55 | (12) |
|
|
55 | (1) |
|
3.2.2 Matrix expression of a P-time event graph |
|
|
56 | (1) |
|
3.2.3 Matrix expression of P-time event graphs with interdependent residence durations |
|
|
57 | (2) |
|
3.2.4 General form Ax ≤ b |
|
|
59 | (1) |
|
|
60 | (1) |
|
3.2.6 Existence of a 1-periodic behavior |
|
|
61 | (4) |
|
|
65 | (2) |
|
|
67 | (8) |
|
|
67 | (2) |
|
|
69 | (1) |
|
|
70 | (5) |
|
|
75 | (1) |
|
|
76 | (3) |
|
Chapter 4 Control with Specifications |
|
|
79 | (40) |
|
|
79 | (1) |
|
4.2 Time interval systems |
|
|
80 | (8) |
|
4.2.1 (min, max, +) algebraic models |
|
|
81 | (1) |
|
|
82 | (1) |
|
4.2.3 P-time event graphs |
|
|
83 | (1) |
|
4.2.4 Time stream event graphs |
|
|
84 | (4) |
|
|
88 | (4) |
|
|
88 | (1) |
|
4.3.2 Pedagogical example: education system |
|
|
89 | (2) |
|
|
91 | (1) |
|
|
92 | (15) |
|
4.4.1 Fixed-point formulation |
|
|
92 | (3) |
|
|
95 | (8) |
|
|
103 | (4) |
|
|
107 | (4) |
|
|
111 | (7) |
|
|
111 | (2) |
|
4.6.2 Fixed-point formulation |
|
|
113 | (1) |
|
|
114 | (2) |
|
4.6.4 Optimal control with specifications |
|
|
116 | (1) |
|
|
117 | (1) |
|
|
118 | (1) |
|
Chapter 5 Online Aspect of Predictive Control |
|
|
119 | (22) |
|
|
119 | (3) |
|
|
119 | (1) |
|
5.1.2 Specific characteristics |
|
|
120 | (2) |
|
5.2 Control without desired output (problem 1) |
|
|
122 | (5) |
|
|
122 | (1) |
|
|
123 | (1) |
|
5.2.3 Trajectory description |
|
|
124 | (1) |
|
|
125 | (2) |
|
5.3 Control with desired output (problem 2) |
|
|
127 | (3) |
|
|
127 | (1) |
|
|
128 | (1) |
|
|
129 | (1) |
|
5.4 Control on a sliding horizon (problem 3): online and offline aspects |
|
|
130 | (2) |
|
5.4.1 CPU time of the online control |
|
|
131 | (1) |
|
5.5 Kleene star of the block tri-diagonal matrix and formal expressions of the sub-matrices |
|
|
132 | (6) |
|
|
138 | (3) |
Bibliography |
|
141 | (8) |
List of Symbols |
|
149 | (4) |
Index |
|
153 | |