Muutke küpsiste eelistusi

E-raamat: Disease Mapping with WinBUGS and MLwiN

(University of South Carolina, USA), (University of Nottingham, UK), (University of South Carolina, USA)
  • Formaat: PDF+DRM
  • Sari: Statistics in Practice
  • Ilmumisaeg: 31-Oct-2003
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9780470856055
  • Formaat - PDF+DRM
  • Hind: 125,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Sari: Statistics in Practice
  • Ilmumisaeg: 31-Oct-2003
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9780470856055

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Disease mapping involves the analysis of geo-referenced disease incidence data and has many applications, for example within resource allocation, cluster alarm analysis, and ecological studies. There is a real need amongst public health workers for simpler and more efficient tools for the analysis of geo-referenced disease incidence data. Bayesian and multilevel methods provide the required efficiency, and with the emergence of software packages – such as WinBUGS and MLwiN – are now easy to implement in practice.
  • Provides an introduction to Bayesian and multilevel modelling in disease mapping.
  • Adopts a practical approach, with many detailed worked examples.
  • Includes introductory material on WinBUGS and MLwiN.
  • Discusses three applications in detail – relative risk estimation, focused clustering, and ecological analysis.
  • Suitable for public health workers and epidemiologists with a sound statistical knowledge.
  • Supported by a Website featuring data sets and WinBUGS and MLwiN programs.

Disease Mapping with WinBUGS and MLwiN  provides a practical introduction to the use of software for disease mapping for researchers, practitioners and graduate students from statistics, public health and epidemiology who analyse disease incidence data.

Arvustused

"written at a level that will be readily accessible to anyone with a modest background in applied statistics." (Technometrics, February 2005) "The book certainly is a nice addition to my disease mapping books. The book is equally useful for the undergraduate and graduate students as well as public health professionals. (E-STREAMS, July 2004)

a good guide and a useful addition for any graduate statistician or epidemiologist (Statistical Methods in Medical Research, No.13 2004)

"...outlines the models used in statistical disease mapping, and gives details of how the models can be implemented using two packages..." (Short Book Reviews, Vol.24, No.3)

"Readers will greatly profit from this book" (International Society of Clinical Biostatistics Dec 2005)

Preface.
Notation.
0.1 Standard notation for multilevel modelling.
0.2 Spatial multiple-membership models and the MMMC notation.
0.3 Standard notation for WinBUGS models.
1. Disease mapping basics.
1.1 Disease mapping and map reconstruction.
1.2 Di


Andrew B. Lawson is a professor of biostatistics and eminent scholar in the Division of Biostatistics and Epidemiology in the College of Medicine at the Medical University of South Carolina. He is an ASA fellow and an advisor in disease mapping and risk assessment for the World Health Organization. Dr. Lawson has published over 100 journal papers and eight books and is the founding editor of Spatial and Spatio-temporal Epidemiology. He received a PhD in spatial statistics from the University of St. Andrews. His research interests include the analysis of clustered disease maps, spatial and spatio-temporal disease surveillance, nutritional measurement error, and Bayesian latent variable and SEM modeling.