Muutke küpsiste eelistusi

E-raamat: Disorder and Critical Phenomena Through Basic Probability Models: Ecole d'Ete de Probabilites de Saint-Flour XL - 2010

  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Mathematics 2025
  • Ilmumisaeg: 16-Jul-2011
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783642211560
  • Formaat - PDF+DRM
  • Hind: 39,51 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Mathematics 2025
  • Ilmumisaeg: 16-Jul-2011
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783642211560

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Understanding the effect of disorder on critical phenomena is a central issue in statistical mechanics. In probabilistic terms: what happens if we perturb a system exhibiting a phase transition by introducing a random environment? The physics community has approached this very broad question by aiming at general criteria that tell whether or not the addition of disorder changes the critical properties of a model: some of the predictions are truly striking and mathematically challenging. We approach this domain of ideas by focusing on a specific class of models, the "pinning models," for which a series of recent mathematical works has essentially put all the main predictions of the physics community on firm footing; in some cases, mathematicians have even gone beyond, settling a number of controversial issues. But the purpose of these notes, beyond treating the pinning models in full detail, is also to convey the gist, or at least the flavor, of the "overall picture," which is, in many respects, unfamiliar territory for mathematicians.

Understanding the effect of disorder on critical phenomena is a central issue in statistical mechanics. This volume explores this problem by focusing on "pinning models," covering recent mathematical works that have essentially put the main predictions of the physics community on firm footing.
1 Introduction
1(4)
References
4(1)
2 Homogeneous Pinning Systems: A Class of Exactly Solved Models
5(24)
2.1 What Happens if We Reward a Random Walk When it Touches the Origin?
5(9)
2.1.1 The Random Walk Pinning Model
5(2)
2.1.2 Visits to the Origin and the Computation of the Partition Function
7(3)
2.1.3 From Partition Function Estimates to Properties of the System
10(4)
2.2 The General Homogeneous Pinning Model
14(4)
2.3 Phase Transition and Critical Behavior
18(1)
2.4 A First Look at a Crucial Notion: The Correlation Length
19(2)
2.5 Why Do People Look at Pinning Models? A Modeling Intermezzo
21(3)
2.5.1 Polymer Pinning by a Defect
21(1)
2.5.2 Interfaces in Two Dimensions
21(3)
2.5.3 DNA Denaturation: The Poland-Scheraga Model
24(1)
2.6 A Look at the Literature
24(5)
References
26(3)
3 Introduction to Disordered Pinning Models
29(12)
3.1 The Disordered Pinning Model
29(3)
3.2 Super-Additivity, Free Energy, and Localization
32(3)
3.2.1 Two Important Remarks
34(1)
3.3 Self-Averaging Property, Effect of Boundary Condition
35(3)
3.3.1 Proof of Proposition 3.2
35(2)
3.3.2 Free and Constrained Models
37(1)
3.4 A Look at the Literature and, Once Again, Correlation Length Issues
38(3)
References
40(1)
4 Irrelevant Disorder Estimates
41(10)
4.1 Disorder and Critical Behavior: What to Expect?
41(5)
4.1.1 First Approach: An Expansion in Powers of β2
42(2)
4.1.2 Second Approach: A 2-Replica Argument
44(2)
4.2 Disorder is Irrelevant if α < 1/2 (and if β is Not Too Large): A Proof
46(3)
4.3 A Look at the Literature
49(2)
References
50(1)
5 Relevant Disorder Estimates: The Smoothing Phenomenon
51(12)
5.1 Smoothing for Gaussian Charges: The Rare Stretch Strategy
51(4)
5.2 More General Charge Distributions
55(1)
5.3 Back to and Beyond Harris Criterion: Disorder and Smoothing
55(5)
5.3.1 Disorder and Phase Transitions
56(1)
5.3.2 Harris' Heuristic Argument
57(1)
5.3.3 Relevance and Irrelevance
58(1)
5.3.4 The Diluted Ising Model
58(1)
5.3.5 Random External Fields
59(1)
5.4 A Further Look at the Literature
60(3)
References
60(3)
6 Critical Point Shift: The Fractional Moment Method
63(28)
6.1 Main Result and Overview
63(2)
6.2 The Basic Fractional Moment Estimates
65(2)
6.3 The α > 1 Case
67(7)
6.3.1 A Different Look on Proposition 6.3
67(1)
6.3.2 A First Coarse Graining Procedure: Iterated Fractional Moment Estimates
68(2)
6.3.3 Finite Volume Estimates: The Proof of Theorem 6.1 for α > 1
70(4)
6.4 The α = 1 Case
74(1)
6.5 The α (1/2, 1) Case
75(4)
6.5.1 Bounds for Correlation Length Size Systems
76(2)
6.5.2 Proof of Theorem 6.1, Case α (1/2, 1)
78(1)
6.6 The α = 1/2 Case
79(8)
6.6.1 Estimates up to the (Annealed) Correlation Length: Gaussian Case
79(4)
6.6.2 Beyond the Correlation Length: The Proof of Theorem 6.1 (α = 1/2)
83(4)
6.7 A Look at the Literature
87(4)
References
88(3)
7 The Coarse Graining Procedure
91(10)
7.1 Coarse Graining Estimates
91(10)
References
99(2)
8 Path Properties
101(12)
8.1 Overview
101(1)
8.2 A Quick Look at Concentration Inequalities
102(2)
8.3 The Localized Regime
104(4)
8.3.1 A Basic Observation (and its Consequences)
104(2)
8.3.2 On μ(β, h) and F (β, h)
106(2)
8.4 The Delocalized Regime
108(1)
8.5 Path Behavior: Overview of What is Known and What is Not
109(4)
8.5.1 On the Localized (and Critical) Regime
110(1)
8.5.2 On the Delocalized Regime
111(1)
References
111(2)
A Discrete Renewal Theory: Basic (and a Few Less Basic) Facts and Estimates
113(14)
A.1 A Crash Course on Renewal Theory
113(4)
A.1.1 Renewal and Markov Chains
113(1)
A.1.2 The Renewal Theorem
114(1)
A.1.3 Beyond the Renewal Theorem
115(1)
A.1.4 Convergence of Renewal and Point Processes
116(1)
A.2 Some Pinning Oriented Renewal Issues
117(10)
A.2.1 On Boundary Effects
117(1)
A.2.2 Two Scaling Results for Renewal Processes
118(4)
A.2.3 On the Derivatives of the Free Energy Near Criticality
122(3)
References
125(2)
Index 127(2)
List of participants 129