Muutke küpsiste eelistusi

E-raamat: Distillation Design and Control Using Aspen Simulation

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 17-Apr-2013
  • Kirjastus: Wiley-AIChE
  • Keel: eng
  • ISBN-13: 9781118510094
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 149,37 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 17-Apr-2013
  • Kirjastus: Wiley-AIChE
  • Keel: eng
  • ISBN-13: 9781118510094
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Learn how to develop optimal steady-state designs for distillation systems

As the search for new energy sources grows ever more urgent, distillation remains at the forefront among separation methods in the chemical, petroleum, and energy industries. Most importantly, as renewable sources of energy and chemical feedstocks continue to be developed, distillation design and control will become ever more important in our ability to ensure global sustainability.

Using the commercial simulators Aspen Plus® and Aspen Dynamics®, this text enables readers to develop optimal steady-state designs for distillation systems. Moreover, readers will discover how to develop effective control structures. While traditional distillation texts focus on the steady-state economic aspects of distillation design, this text also addresses such issues as dynamic performance in the face of disturbances.

Distillation Design and Control Using Aspen™ Simulation introduces the current status and future implications of this vital technology from the perspectives of steady-state design and dynamics. The book begins with a discussion of vapor-liquid phase equilibrium and then explains the core methods and approaches for analyzing distillation columns. Next, the author covers such topics as:





Setting up a steady-state simulation Distillation economic optimization Steady-state calculations for control structure selection Control of petroleum fractionators Design and control of divided-wall columns Pressure-compensated temperature control in distillation columns

Synthesizing four decades of research breakthroughs and practical applications in this dynamic field, Distillation Design and Control Using Aspen™ Simulation is a trusted reference that enables both students and experienced engineers to solve a broad range of challenging distillation problems.
Preface to the Second Edition xv
Preface to the First Edition xvii
1 Fundamentals of Vapor--Liquid--Equilibrium (VLE)
1(28)
1.1 Vapor Pressure
1(2)
1.2 Binary VLE Phase Diagrams
3(4)
1.3 Physical Property Methods
7(1)
1.4 Relative Volatility
7(1)
1.5 Bubble Point Calculations
8(1)
1.6 Ternary Diagrams
9(2)
1.7 VLE Nonideality
11(4)
1.8 Residue Curves for Ternary Systems
15(7)
1.9 Distillation Boundaries
22(3)
1.10 Conclusions
25(4)
Reference
27(2)
2 Analysis of Distillation Columns
29(10)
2.1 Design Degrees of Freedom
29(1)
2.2 Binary McCabe--Thiele Method
30(6)
2.2.1 Operating Lines
32(1)
2.2.2 q-Line
33(2)
2.2.3 Stepping Off Trays
35(1)
2.2.4 Effect of Parameters
35(1)
2.2.5 Limiting Conditions
36(1)
2.3 Approximate Multicomponent Methods
36(2)
2.3.1 Fenske Equation for Minimum Number of Trays
37(1)
2.3.2 Underwood Equations for Minimum Reflux Ratio
37(1)
2.4 Conclusions
38(1)
3 Setting Up a Steady-State Simulation
39(42)
3.1 Configuring a New Simulation
39(7)
3.2 Specifying Chemical Components and Physical Properties
46(5)
3.3 Specifying Stream Properties
51(1)
3.4 Specifying Parameters of Equipment
52(5)
3.4.1 Column C1
52(3)
3.4.2 Valves and Pumps
55(2)
3.5 Running the Simulation
57(1)
3.6 Using Design Spec/Vary Function
58(12)
3.7 Finding the Optimum Feed Tray and Minimum Conditions
70(2)
3.7.1 Optimum Feed Tray
70(1)
3.7.2 Minimum Reflux Ratio
71(1)
3.7.3 Minimum Number of Trays
71(1)
3.8 Column Sizing
72(2)
3.8.1 Length
72(1)
3.8.2 Diameter
72(2)
3.9 Conceptual Design
74(6)
3.10 Conclusions
80(1)
4 Distillation Economic Optimization
81(14)
4.1 Heuristic Optimization
81(2)
4.1.1 Set Total Trays to Twice Minimum Number of Trays
81(2)
4.1.2 Set Reflux Ratio to 1.2 Times Minimum Reflux Ratio
83(1)
4.2 Economic Basis
83(2)
4.3 Results
85(2)
4.4 Operating Optimization
87(5)
4.5 Optimum Pressure for Vacuum Columns
92(2)
4.6 Conclusions
94(1)
5 More Complex Distillation Systems
95(32)
5.1 Extractive Distillation
95(10)
5.1.1 Design
99(2)
5.1.2 Simulation Issues
101(4)
5.2 Ethanol Dehydration
105(10)
5.2.1 VLLE Behavior
106(3)
5.2.2 Process Flowsheet Simulation
109(3)
5.2.3 Converging the Flowsheet
112(3)
5.3 Pressure-Swing Azeotropic Distillation
115(6)
5.4 Heat-Integrated Columns
121(5)
5.4.1 Flowsheet
121(1)
5.4.2 Converging for Neat Operation
122(4)
5.5 Conclusions
126(1)
6 Steady-State Calculations for Control Structure Selection
127(18)
6.1 Control Structure Alternatives
127(1)
6.1.1 Dual-Composition Control
127(1)
6.1.2 Single-End Control
128(1)
6.2 Feed Composition Sensitivity Analysis (ZSA)
128(1)
6.3 Temperature Control Tray Selection
129(15)
6.3.1 Summary of Methods
130(1)
6.3.2 Binary Propane/Isobutane System
131(4)
6.3.3 Ternary BTX System
135(4)
6.3.4 Ternary Azeotropic System
139(5)
6.4 Conclusions
144(1)
Reference
144(1)
7 Converting from Steady-State to Dynamic Simulation
145(40)
7.1 Equipment Sizing
146(2)
7.2 Exporting to Aspen Dynamics
148(2)
7.3 Opening the Dynamic Simulation in Aspen Dynamics
150(2)
7.4 Installing Basic Controllers
152(9)
7.4.1 Reflux
156(1)
7.4.2 Issues
157(4)
7.5 Installing Temperature and Composition Controllers
161(11)
7.5.1 Tray Temperature Control
162(8)
7.5.2 Composition Control
170(1)
7.5.3 Composition/Temperature Cascade Control
170(2)
7.6 Performance Evaluation
172(12)
7.6.1 Installing a Plot
172(2)
7.6.2 Importing Dynamic Results into Matlab
174(2)
7.6.3 Reboiler Heat Input to Feed Ratio
176(5)
7.6.4 Comparison of Temperature Control with Cascade CC/TC
181(3)
7.7 Conclusions
184(1)
8 Control of More Complex Columns
185(72)
8.1 Extractive Distillation Process
185(6)
8.1.1 Design
185(3)
8.1.2 Control Structure
188(3)
8.1.3 Dynamic Performance
191(1)
8.2 Columns with Partial Condensers
191(26)
8.2.1 Total Vapor Distillate
192(17)
8.2.2 Both Vapor and Liquid Distillate Streams
209(8)
8.3 Control of Heat-Integrated Distillation Columns
217(9)
8.3.1 Process Studied
217(1)
8.3.2 Heat Integration Relationships
218(4)
8.3.3 Control Structure
222(1)
8.3.4 Dynamic Performance
223(3)
8.4 Control of Azeotropic Columns/Decanter System
226(12)
8.4.1 Converting to Dynamics and Closing Recycle Loop
227(1)
8.4.2 Installing the Control Structure
228(5)
8.4.3 Performance
233(4)
8.4.4 Numerical Integration Issues
237(1)
8.5 Unusual Control Structure
238(17)
8.5.1 Process Studied
239(3)
8.5.2 Economic Optimum Steady-State Design
242(1)
8.5.3 Control Structure Selection
243(5)
8.5.4 Dynamic Simulation Results
248(1)
8.5.5 Alternative Control Structures
248(6)
8.5.6 Conclusions
254(1)
8.6 Conclusions
255(2)
References
255(2)
9 Reactive Distillation
257(18)
9.1 Introduction
257(1)
9.2 Types of Reactive Distillation Systems
258(5)
9.2.1 Single-Feed Reactions
259(1)
9.2.2 Irreversible Reaction with Heavy Product
259(1)
9.2.3 Neat Operation Versus Use of Excess Reactant
260(3)
9.3 TAME Process Basics
263(3)
9.3.1 Prereactor
263(1)
9.3.2 Reactive Column C1
263(3)
9.4 TAME Reaction Kinetics and VLE
266(4)
9.5 Plantwide Control Structure
270(4)
9.6 Conclusions
274(1)
References
274(1)
10 Control of Sidestream Columns
275(34)
10.1 Liquid Sidestream Column
276(5)
10.1.1 Steady-State Design
276(1)
10.1.2 Dynamic Control
277(4)
10.2 Vapor Sidestream Column
281(5)
10.2.1 Steady-State Design
282(1)
10.2.2 Dynamic Control
282(4)
10.3 Liquid Sidestream Column with Stripper
286(6)
10.3.1 Steady-State Design
286(2)
10.3.2 Dynamic Control
288(4)
10.4 Vapor Sidestream Column with Rectifier
292(8)
10.4.1 Steady-State Design
292(1)
10.4.2 Dynamic Control
293(7)
10.5 Sidestream Purge Column
300(7)
10.5.1 Steady-State Design
300(2)
10.5.2 Dynamic Control
302(5)
10.6 Conclusions
307(2)
11 Control of Petroleum Fractionators
309(46)
11.1 Petroleum Fractions
310(4)
11.2 Characterization Crude Oil
314(7)
11.3 Steady-State Design of Preflash Column
321(7)
11.4 Control of Preflash Column
328(4)
11.5 Steady-State Design of Pipestill
332(14)
11.5.1 Overview of Steady-State Design
333(2)
11.5.2 Configuring the Pipestill in Aspen Plus
335(9)
11.5.3 Effects of Design Parameters
344(2)
11.6 Control of Pipestill
346(8)
11.7 Conclusions
354(1)
References
354(1)
12 Divided-Wall (Petlyuk) Columns
355(30)
12.1 Introduction
355(2)
12.2 Steady-State Design
357(12)
12.2.1 MultiFrac Model
357(9)
12.2.2 RadFrac Model
366(3)
12.3 Control of the Divided-Wall Column
369(11)
12.3.1 Control Structure
369(4)
12.3.2 Implementation in Aspen Dynamics
373(2)
12.3.3 Dynamic Results
375(5)
12.4 Control of the Conventional Column Process
380(3)
12.4.1 Control Structure
380(1)
12.4.2 Dynamic Results and Comparisons
381(2)
12.5 Conclusions and Discussion
383(2)
References
384(1)
13 Dynamic Safety Analysis
385(14)
13.1 Introduction
385(1)
13.2 Safety Scenarios
385(2)
13.3 Process Studied
387(1)
13.4 Basic RadFrac Models
387(2)
13.4.1 Constant Duty Model
387(1)
13.4.2 Constant Temperature Model
388(1)
13.4.3 LMTD Model
388(1)
13.4.4 Condensing or Evaporating Medium Models
388(1)
13.4.5 Dynamic Model for Reboiler
388(1)
13.5 RadFrac Model with Explicit Heat-Exchanger Dynamics
389(3)
13.5.1 Column
389(1)
13.5.2 Condenser
390(1)
13.5.3 Reflux Drum
391(1)
13.5.4 Liquid Split
391(1)
13.5.5 Reboiler
391(1)
13.6 Dynamic Simulations
392(2)
13.6.1 Base Case Control Structure
392(1)
13.6.2 Rigorous Case Control Structure
393(1)
13.7 Comparison of Dynamic Responses
394(3)
13.7.1 Condenser Cooling Failure
394(1)
13.7.2 Heat-Input Surge
395(2)
13.8 Other Issues
397(1)
13.9 Conclusions
398(1)
Reference
398(1)
14 Carbon Dioxide Capture
399(24)
14.1 Carbon Dioxide Removal in Low-Pressure Air Combustion Power Plants
400(12)
14.1.1 Process Design
400(1)
14.1.2 Simulation Issues
401(3)
14.1.3 Plantwide Control Structure
404(4)
14.1.4 Dynamic Performance
408(4)
14.2 Carbon Dioxide Removal in High-Pressure IGCC Power Plants
412(8)
14.2.1 Design
414(1)
14.2.2 Plantwide Control Structure
414(4)
14.2.3 Dynamic Performance
418(2)
14.3 Conclusions
420(3)
References
421(2)
15 Distillation Turndown
423(20)
15.1 Introduction
423(1)
15.2 Control Problem
424(4)
15.2.1 Two-Temperature Control
425(1)
15.2.2 Valve-Position Control
426(1)
15.2.3 Recycle Control
427(1)
15.3 Process Studied
428(3)
15.4 Dynamic Performance for Ramp Disturbances
431(4)
15.4.1 Two-Temperature Control
431(1)
15.4.2 VPC Control
432(1)
15.4.3 Recycle Control
433(1)
15.4.4 Comparison
434(1)
15.5 Dynamic Performance for Step Disturbances
435(4)
15.5.1 Two-Temperature Control
435(1)
15.5.2 VPC Control
436(1)
15.5.3 Recycle Control
436(3)
15.6 Other Control Structures
439(3)
15.6.1 No Temperature Control
439(1)
15.6.2 Dual Temperature Control
440(2)
15.7 Conclusions
442(1)
References
442(1)
16 Pressure-Compensated Temperature Control in Distillation Columns
443(14)
16.1 Introduction
443(2)
16.2 Numerical Example Studied
445(1)
16.3 Conventional Control Structure Selection
446(4)
16.4 Temperature/Pressure/Composition Relationships
450(1)
16.5 Implementation in Aspen Dynamics
451(1)
16.6 Comparison of Dynamic Results
452(3)
16.6.1 Feed Flow Rate Disturbances
452(1)
16.6.2 Pressure Disturbances
453(2)
16.7 Conclusions
455(2)
References
456(1)
17 Ethanol Dehydration
457(12)
17.1 Introduction
457(2)
17.2 Optimization of the Beer Still (Preconcentrator)
459(1)
17.3 Optimization of the Azeotropic and Recovery Columns
460(2)
17.3.1 Optimum Feed Locations
461(1)
17.3.2 Optimum Number of Stages
462(1)
17.4 Optimization of the Entire Process
462(4)
17.5 Cyclohexane Entrainer
466(1)
17.6 Flowsheet Recycle Convergence
466(1)
17.7 Conclusions
467(2)
References
467(2)
18 External Reset Feedback to Prevent Reset Windup
469(18)
18.1 Introduction
469(2)
18.2 External Reset Feedback Circuit Implementation
471(2)
18.2.1 Generate the Error Signal
472(1)
18.2.2 Multiply by Controller Gain
472(1)
18.2.3 Add the Output of Lag
472(1)
18.2.4 Select Lower Signal
472(1)
18.2.5 Setting up the Lag Block
472(1)
18.3 Flash Tank Example
473(6)
18.3.1 Process and Normal Control Structure
473(1)
18.3.2 Override Control Structure Without External Reset Feedback
474(2)
18.3.3 Override Control Structure with External Reset Feedback
476(3)
18.4 Distillation Column Example
479(7)
18.4.1 Normal Control Structure
479(2)
18.4.2 Normal and Override Controllers Without External Reset
481(2)
18.4.3 Normal and Override Controllers with External Reset Feedback
483(3)
18.5 Conclusions
486(1)
References
486(1)
Index 487
WILLIAM L. LUYBEN, PhD, is Professor of Chemical Engineering at Lehigh University where he has taught for over forty-five years. Dr. Luyben spent nine years as an engineer with Exxon and DuPont. He has published fourteen books and more than 250 original research papers. Dr. Luyben is a 2003 recipient of the Computing Practice Award from the CAST Division of the AIChE. He was elected to the Process Control Hall of Fame in 2005. In 2011, the Separations Division of the AIChE recognized his contributions to distillation technology by a special honors session.