Preface to the Second Edition |
|
xv | |
Preface to the First Edition |
|
xvii | |
|
1 Fundamentals of Vapor--Liquid--Equilibrium (VLE) |
|
|
1 | (28) |
|
|
1 | (2) |
|
1.2 Binary VLE Phase Diagrams |
|
|
3 | (4) |
|
1.3 Physical Property Methods |
|
|
7 | (1) |
|
|
7 | (1) |
|
1.5 Bubble Point Calculations |
|
|
8 | (1) |
|
|
9 | (2) |
|
|
11 | (4) |
|
1.8 Residue Curves for Ternary Systems |
|
|
15 | (7) |
|
1.9 Distillation Boundaries |
|
|
22 | (3) |
|
|
25 | (4) |
|
|
27 | (2) |
|
2 Analysis of Distillation Columns |
|
|
29 | (10) |
|
2.1 Design Degrees of Freedom |
|
|
29 | (1) |
|
2.2 Binary McCabe--Thiele Method |
|
|
30 | (6) |
|
|
32 | (1) |
|
|
33 | (2) |
|
|
35 | (1) |
|
2.2.4 Effect of Parameters |
|
|
35 | (1) |
|
2.2.5 Limiting Conditions |
|
|
36 | (1) |
|
2.3 Approximate Multicomponent Methods |
|
|
36 | (2) |
|
2.3.1 Fenske Equation for Minimum Number of Trays |
|
|
37 | (1) |
|
2.3.2 Underwood Equations for Minimum Reflux Ratio |
|
|
37 | (1) |
|
|
38 | (1) |
|
3 Setting Up a Steady-State Simulation |
|
|
39 | (42) |
|
3.1 Configuring a New Simulation |
|
|
39 | (7) |
|
3.2 Specifying Chemical Components and Physical Properties |
|
|
46 | (5) |
|
3.3 Specifying Stream Properties |
|
|
51 | (1) |
|
3.4 Specifying Parameters of Equipment |
|
|
52 | (5) |
|
|
52 | (3) |
|
|
55 | (2) |
|
3.5 Running the Simulation |
|
|
57 | (1) |
|
3.6 Using Design Spec/Vary Function |
|
|
58 | (12) |
|
3.7 Finding the Optimum Feed Tray and Minimum Conditions |
|
|
70 | (2) |
|
|
70 | (1) |
|
3.7.2 Minimum Reflux Ratio |
|
|
71 | (1) |
|
3.7.3 Minimum Number of Trays |
|
|
71 | (1) |
|
|
72 | (2) |
|
|
72 | (1) |
|
|
72 | (2) |
|
|
74 | (6) |
|
|
80 | (1) |
|
4 Distillation Economic Optimization |
|
|
81 | (14) |
|
4.1 Heuristic Optimization |
|
|
81 | (2) |
|
4.1.1 Set Total Trays to Twice Minimum Number of Trays |
|
|
81 | (2) |
|
4.1.2 Set Reflux Ratio to 1.2 Times Minimum Reflux Ratio |
|
|
83 | (1) |
|
|
83 | (2) |
|
|
85 | (2) |
|
4.4 Operating Optimization |
|
|
87 | (5) |
|
4.5 Optimum Pressure for Vacuum Columns |
|
|
92 | (2) |
|
|
94 | (1) |
|
5 More Complex Distillation Systems |
|
|
95 | (32) |
|
5.1 Extractive Distillation |
|
|
95 | (10) |
|
|
99 | (2) |
|
|
101 | (4) |
|
|
105 | (10) |
|
|
106 | (3) |
|
5.2.2 Process Flowsheet Simulation |
|
|
109 | (3) |
|
5.2.3 Converging the Flowsheet |
|
|
112 | (3) |
|
5.3 Pressure-Swing Azeotropic Distillation |
|
|
115 | (6) |
|
5.4 Heat-Integrated Columns |
|
|
121 | (5) |
|
|
121 | (1) |
|
5.4.2 Converging for Neat Operation |
|
|
122 | (4) |
|
|
126 | (1) |
|
6 Steady-State Calculations for Control Structure Selection |
|
|
127 | (18) |
|
6.1 Control Structure Alternatives |
|
|
127 | (1) |
|
6.1.1 Dual-Composition Control |
|
|
127 | (1) |
|
|
128 | (1) |
|
6.2 Feed Composition Sensitivity Analysis (ZSA) |
|
|
128 | (1) |
|
6.3 Temperature Control Tray Selection |
|
|
129 | (15) |
|
|
130 | (1) |
|
6.3.2 Binary Propane/Isobutane System |
|
|
131 | (4) |
|
|
135 | (4) |
|
6.3.4 Ternary Azeotropic System |
|
|
139 | (5) |
|
|
144 | (1) |
|
|
144 | (1) |
|
7 Converting from Steady-State to Dynamic Simulation |
|
|
145 | (40) |
|
|
146 | (2) |
|
7.2 Exporting to Aspen Dynamics |
|
|
148 | (2) |
|
7.3 Opening the Dynamic Simulation in Aspen Dynamics |
|
|
150 | (2) |
|
7.4 Installing Basic Controllers |
|
|
152 | (9) |
|
|
156 | (1) |
|
|
157 | (4) |
|
7.5 Installing Temperature and Composition Controllers |
|
|
161 | (11) |
|
7.5.1 Tray Temperature Control |
|
|
162 | (8) |
|
7.5.2 Composition Control |
|
|
170 | (1) |
|
7.5.3 Composition/Temperature Cascade Control |
|
|
170 | (2) |
|
7.6 Performance Evaluation |
|
|
172 | (12) |
|
|
172 | (2) |
|
7.6.2 Importing Dynamic Results into Matlab |
|
|
174 | (2) |
|
7.6.3 Reboiler Heat Input to Feed Ratio |
|
|
176 | (5) |
|
7.6.4 Comparison of Temperature Control with Cascade CC/TC |
|
|
181 | (3) |
|
|
184 | (1) |
|
8 Control of More Complex Columns |
|
|
185 | (72) |
|
8.1 Extractive Distillation Process |
|
|
185 | (6) |
|
|
185 | (3) |
|
|
188 | (3) |
|
8.1.3 Dynamic Performance |
|
|
191 | (1) |
|
8.2 Columns with Partial Condensers |
|
|
191 | (26) |
|
8.2.1 Total Vapor Distillate |
|
|
192 | (17) |
|
8.2.2 Both Vapor and Liquid Distillate Streams |
|
|
209 | (8) |
|
8.3 Control of Heat-Integrated Distillation Columns |
|
|
217 | (9) |
|
|
217 | (1) |
|
8.3.2 Heat Integration Relationships |
|
|
218 | (4) |
|
|
222 | (1) |
|
8.3.4 Dynamic Performance |
|
|
223 | (3) |
|
8.4 Control of Azeotropic Columns/Decanter System |
|
|
226 | (12) |
|
8.4.1 Converting to Dynamics and Closing Recycle Loop |
|
|
227 | (1) |
|
8.4.2 Installing the Control Structure |
|
|
228 | (5) |
|
|
233 | (4) |
|
8.4.4 Numerical Integration Issues |
|
|
237 | (1) |
|
8.5 Unusual Control Structure |
|
|
238 | (17) |
|
|
239 | (3) |
|
8.5.2 Economic Optimum Steady-State Design |
|
|
242 | (1) |
|
8.5.3 Control Structure Selection |
|
|
243 | (5) |
|
8.5.4 Dynamic Simulation Results |
|
|
248 | (1) |
|
8.5.5 Alternative Control Structures |
|
|
248 | (6) |
|
|
254 | (1) |
|
|
255 | (2) |
|
|
255 | (2) |
|
|
257 | (18) |
|
|
257 | (1) |
|
9.2 Types of Reactive Distillation Systems |
|
|
258 | (5) |
|
9.2.1 Single-Feed Reactions |
|
|
259 | (1) |
|
9.2.2 Irreversible Reaction with Heavy Product |
|
|
259 | (1) |
|
9.2.3 Neat Operation Versus Use of Excess Reactant |
|
|
260 | (3) |
|
|
263 | (3) |
|
|
263 | (1) |
|
|
263 | (3) |
|
9.4 TAME Reaction Kinetics and VLE |
|
|
266 | (4) |
|
9.5 Plantwide Control Structure |
|
|
270 | (4) |
|
|
274 | (1) |
|
|
274 | (1) |
|
10 Control of Sidestream Columns |
|
|
275 | (34) |
|
10.1 Liquid Sidestream Column |
|
|
276 | (5) |
|
10.1.1 Steady-State Design |
|
|
276 | (1) |
|
|
277 | (4) |
|
10.2 Vapor Sidestream Column |
|
|
281 | (5) |
|
10.2.1 Steady-State Design |
|
|
282 | (1) |
|
|
282 | (4) |
|
10.3 Liquid Sidestream Column with Stripper |
|
|
286 | (6) |
|
10.3.1 Steady-State Design |
|
|
286 | (2) |
|
|
288 | (4) |
|
10.4 Vapor Sidestream Column with Rectifier |
|
|
292 | (8) |
|
10.4.1 Steady-State Design |
|
|
292 | (1) |
|
|
293 | (7) |
|
10.5 Sidestream Purge Column |
|
|
300 | (7) |
|
10.5.1 Steady-State Design |
|
|
300 | (2) |
|
|
302 | (5) |
|
|
307 | (2) |
|
11 Control of Petroleum Fractionators |
|
|
309 | (46) |
|
|
310 | (4) |
|
11.2 Characterization Crude Oil |
|
|
314 | (7) |
|
11.3 Steady-State Design of Preflash Column |
|
|
321 | (7) |
|
11.4 Control of Preflash Column |
|
|
328 | (4) |
|
11.5 Steady-State Design of Pipestill |
|
|
332 | (14) |
|
11.5.1 Overview of Steady-State Design |
|
|
333 | (2) |
|
11.5.2 Configuring the Pipestill in Aspen Plus |
|
|
335 | (9) |
|
11.5.3 Effects of Design Parameters |
|
|
344 | (2) |
|
11.6 Control of Pipestill |
|
|
346 | (8) |
|
|
354 | (1) |
|
|
354 | (1) |
|
12 Divided-Wall (Petlyuk) Columns |
|
|
355 | (30) |
|
|
355 | (2) |
|
|
357 | (12) |
|
|
357 | (9) |
|
|
366 | (3) |
|
12.3 Control of the Divided-Wall Column |
|
|
369 | (11) |
|
|
369 | (4) |
|
12.3.2 Implementation in Aspen Dynamics |
|
|
373 | (2) |
|
|
375 | (5) |
|
12.4 Control of the Conventional Column Process |
|
|
380 | (3) |
|
|
380 | (1) |
|
12.4.2 Dynamic Results and Comparisons |
|
|
381 | (2) |
|
12.5 Conclusions and Discussion |
|
|
383 | (2) |
|
|
384 | (1) |
|
13 Dynamic Safety Analysis |
|
|
385 | (14) |
|
|
385 | (1) |
|
|
385 | (2) |
|
|
387 | (1) |
|
13.4 Basic RadFrac Models |
|
|
387 | (2) |
|
13.4.1 Constant Duty Model |
|
|
387 | (1) |
|
13.4.2 Constant Temperature Model |
|
|
388 | (1) |
|
|
388 | (1) |
|
13.4.4 Condensing or Evaporating Medium Models |
|
|
388 | (1) |
|
13.4.5 Dynamic Model for Reboiler |
|
|
388 | (1) |
|
13.5 RadFrac Model with Explicit Heat-Exchanger Dynamics |
|
|
389 | (3) |
|
|
389 | (1) |
|
|
390 | (1) |
|
|
391 | (1) |
|
|
391 | (1) |
|
|
391 | (1) |
|
|
392 | (2) |
|
13.6.1 Base Case Control Structure |
|
|
392 | (1) |
|
13.6.2 Rigorous Case Control Structure |
|
|
393 | (1) |
|
13.7 Comparison of Dynamic Responses |
|
|
394 | (3) |
|
13.7.1 Condenser Cooling Failure |
|
|
394 | (1) |
|
|
395 | (2) |
|
|
397 | (1) |
|
|
398 | (1) |
|
|
398 | (1) |
|
14 Carbon Dioxide Capture |
|
|
399 | (24) |
|
14.1 Carbon Dioxide Removal in Low-Pressure Air Combustion Power Plants |
|
|
400 | (12) |
|
|
400 | (1) |
|
|
401 | (3) |
|
14.1.3 Plantwide Control Structure |
|
|
404 | (4) |
|
14.1.4 Dynamic Performance |
|
|
408 | (4) |
|
14.2 Carbon Dioxide Removal in High-Pressure IGCC Power Plants |
|
|
412 | (8) |
|
|
414 | (1) |
|
14.2.2 Plantwide Control Structure |
|
|
414 | (4) |
|
14.2.3 Dynamic Performance |
|
|
418 | (2) |
|
|
420 | (3) |
|
|
421 | (2) |
|
|
423 | (20) |
|
|
423 | (1) |
|
|
424 | (4) |
|
15.2.1 Two-Temperature Control |
|
|
425 | (1) |
|
15.2.2 Valve-Position Control |
|
|
426 | (1) |
|
|
427 | (1) |
|
|
428 | (3) |
|
15.4 Dynamic Performance for Ramp Disturbances |
|
|
431 | (4) |
|
15.4.1 Two-Temperature Control |
|
|
431 | (1) |
|
|
432 | (1) |
|
|
433 | (1) |
|
|
434 | (1) |
|
15.5 Dynamic Performance for Step Disturbances |
|
|
435 | (4) |
|
15.5.1 Two-Temperature Control |
|
|
435 | (1) |
|
|
436 | (1) |
|
|
436 | (3) |
|
15.6 Other Control Structures |
|
|
439 | (3) |
|
15.6.1 No Temperature Control |
|
|
439 | (1) |
|
15.6.2 Dual Temperature Control |
|
|
440 | (2) |
|
|
442 | (1) |
|
|
442 | (1) |
|
16 Pressure-Compensated Temperature Control in Distillation Columns |
|
|
443 | (14) |
|
|
443 | (2) |
|
16.2 Numerical Example Studied |
|
|
445 | (1) |
|
16.3 Conventional Control Structure Selection |
|
|
446 | (4) |
|
16.4 Temperature/Pressure/Composition Relationships |
|
|
450 | (1) |
|
16.5 Implementation in Aspen Dynamics |
|
|
451 | (1) |
|
16.6 Comparison of Dynamic Results |
|
|
452 | (3) |
|
16.6.1 Feed Flow Rate Disturbances |
|
|
452 | (1) |
|
16.6.2 Pressure Disturbances |
|
|
453 | (2) |
|
|
455 | (2) |
|
|
456 | (1) |
|
|
457 | (12) |
|
|
457 | (2) |
|
17.2 Optimization of the Beer Still (Preconcentrator) |
|
|
459 | (1) |
|
17.3 Optimization of the Azeotropic and Recovery Columns |
|
|
460 | (2) |
|
17.3.1 Optimum Feed Locations |
|
|
461 | (1) |
|
17.3.2 Optimum Number of Stages |
|
|
462 | (1) |
|
17.4 Optimization of the Entire Process |
|
|
462 | (4) |
|
17.5 Cyclohexane Entrainer |
|
|
466 | (1) |
|
17.6 Flowsheet Recycle Convergence |
|
|
466 | (1) |
|
|
467 | (2) |
|
|
467 | (2) |
|
18 External Reset Feedback to Prevent Reset Windup |
|
|
469 | (18) |
|
|
469 | (2) |
|
18.2 External Reset Feedback Circuit Implementation |
|
|
471 | (2) |
|
18.2.1 Generate the Error Signal |
|
|
472 | (1) |
|
18.2.2 Multiply by Controller Gain |
|
|
472 | (1) |
|
18.2.3 Add the Output of Lag |
|
|
472 | (1) |
|
18.2.4 Select Lower Signal |
|
|
472 | (1) |
|
18.2.5 Setting up the Lag Block |
|
|
472 | (1) |
|
|
473 | (6) |
|
18.3.1 Process and Normal Control Structure |
|
|
473 | (1) |
|
18.3.2 Override Control Structure Without External Reset Feedback |
|
|
474 | (2) |
|
18.3.3 Override Control Structure with External Reset Feedback |
|
|
476 | (3) |
|
18.4 Distillation Column Example |
|
|
479 | (7) |
|
18.4.1 Normal Control Structure |
|
|
479 | (2) |
|
18.4.2 Normal and Override Controllers Without External Reset |
|
|
481 | (2) |
|
18.4.3 Normal and Override Controllers with External Reset Feedback |
|
|
483 | (3) |
|
|
486 | (1) |
|
|
486 | (1) |
Index |
|
487 | |