Muutke küpsiste eelistusi

E-raamat: Distributed Artificial Intelligence: Second International Conference, DAI 2020, Nanjing, China, October 24-27, 2020, Proceedings

Edited by , Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the refereed proceedings of the Second International Conference on Distributed Artificial Intelligence, DAI 2020, held in Nanjing, China, in October 2020.





The 9 full papers presented in this book were carefully reviewed and selected from 22 submissions. DAI aims at bringing together international researchers and practitioners in related areas including general AI, multiagent systems, distributed learning, computational game theory, etc., to provide a single, high-profile, internationally renowned forum for research in the theory and practice of distributed AI.





Due to the Corona pandemic this event was held virtually.

Parallel Algorithm for Nash Equilibrium in Multiplayer Stochastic Games with Application to Naval Strategic Planning.- LAC-Nav: Collision-Free Multiagent Navigation Based on The Local ActionCells.- MGHRL: Meta Goal-generation for Hierarchical Reinforcement Learning.- D3PG: Decomposed Deep Deterministic Policy Gradient for Continuous Control.- Lyapunov-Based Reinforcement Learning for Decentralized Multi-Agent Control.- Hybrid Independent Learning in Cooperative Markov Games.- Efficient Exploration By Novelty-Pursuit.- Context-aware Multi-Agent Coordination with Loose Couplings and Repeated Interaction.- Battery Management for Automated Warehouses via Deep Reinforcement Learning.