Muutke küpsiste eelistusi

E-raamat: Distributed Computing in Big Data Analytics: Concepts, Technologies and Applications

  • Formaat - EPUB+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Big data technologies are used to achieve any type of analytics in a fast and predictable way, thus enabling better human and machine level decision making. Principles of distributed computing are the keys to big data technologies and analytics. The mechanisms related to data storage, data access, data transfer, visualization and predictive modeling using distributed processing in multiple low cost machines are the key considerations that make big data analytics possible within stipulated cost and time practical for consumption by human and machines. However, the current literature available in big data analytics needs a holistic perspective to highlight the relation between big data analytics and distributed processing for ease of understanding and practitioner use.

This book fills the literature gap by addressing key aspects of distributed processing in big data analytics. The chapters tackle the essential concepts and patterns of distributed computing widely used in big data analytics. This book discusses also covers the main technologies which support distributed processing. Finally, this book provides insight into applications of big data analytics, highlighting how principles of distributed computing are used in those situations.





Practitioners and researchers alike will find this book a valuable tool for their work, helping them to select the appropriate technologies, while understanding the inherent strengths and drawbacks of those technologies.
On the Role of Distributed Computing in Big Data Analytics
1(10)
Alba Amato
Fundamental Concepts of Distributed Computing Used in Big Data Analytics
11(24)
Qi Jun Wang
Distributed Computing Patterns Useful in Big Data Analytics
35(22)
Julio Cesar Santos dos Anjos
Claudio Fernando Resin Geyer
Jorge Luis Victoria Barbosa
Distributed Computing Technologies in Big Data Analytics
57(26)
Kaushik Dutta
Security Issues and Challenges in Big Data Analytics in Distributed Environment
83(12)
Mayank Swarnkar
Robin Singh Bhadoria
Scientific Computing and Big Data Analytics: Application in Climate Science
95(12)
Subarna Bhattacharyya
Detelina Ivanova
Distributed Computing in Cognitive Analytics
107(14)
Vishwanath Kamat
Distributed Computing in Social Media Analytics
121(16)
Matthew Riemer
Utilizing Big Data Analytics for Automatic Building of Language-agnostic Semantic Knowledge Bases
137
Khalifeh AlJadda
Mohammed Korayem
Trey Grainger