Muutke küpsiste eelistusi

E-raamat: Distributed Medium Access Control in Wireless Networks

  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This brief investigates distributed medium access control (MAC) with QoS provisioning for both single- and multi-hop wireless networks including wireless local area networks (WLANs), wireless ad hoc networks, and wireless mesh networks.





For WLANs, an efficient MAC scheme and a call admission control algorithm are presented to provide guaranteed QoS for voice traffic and, at the same time, increase the voice capacity significantly compared with the current WLAN standard. In addition, a novel token-based scheduling scheme is proposed to provide great flexibility and facility to the network service provider for service class management.

Also proposed is a novel busy-tone based distributed MAC scheme for wireless ad hoc networks and a collision-free MAC scheme for wireless mesh networks, respectively, taking the different network characteristics into consideration. The proposed schemes enhance the QoS provisioning capability to real-time traffic and, at the same time, significantly improve the system throughput and fairness performance for data traffic, as compared with the most popular IEEE 802.11 MAC scheme.
1 Introduction
1(6)
1.1 Heterogeneous Wireless Communication Networks
1(1)
1.2 Quality-of-Service Provisioning in Wireless Networks
2(1)
1.3 The Importance and Challenges of MAC in Wireless Networks
3(4)
2 Literature Review and Background
7(12)
2.1 MAC in WLANs
7(3)
2.1.1 IEEE 802.11 MAC Protocol
7(2)
2.1.2 Limitations of IEEE 802.11 in QoS Support
9(1)
2.1.3 Related Work Review
9(1)
2.2 MAC in Multi-hop Wireless Networks
10(5)
2.2.1 Problems Due to a Multi-hop Wireless Environment
10(2)
2.2.2 MAC over Wireless Ad Hoc Networks
12(3)
2.2.3 MAC over Wireless Mesh Networks
15(1)
2.3 Traffic Class and QoS Requirements
15(2)
2.4 Summary
17(2)
3 Voice Capacity Improvement over Infrastructure WLANs
19(20)
3.1 Wireless Local Area Network
19(1)
3.2 The Service Interval Structure
20(1)
3.3 Mechanisms for Capacity Improvement
20(4)
3.3.1 Voice Traffic Multiplexing
21(1)
3.3.1.1 Dynamic Polling During CFP
21(1)
3.3.1.2 Guaranteed Access Priority to Voice During CP
22(1)
3.3.2 Overhead Reduction
23(1)
3.4 Voice Capacity Analysis
24(6)
3.4.1 Time Required to Serve Contending Voice Sessions in a CP
24(3)
3.4.2 Time Required to Serve Voice Sessions in a CFP
27(2)
3.4.3 Voice Capacity
29(1)
3.5 Numerical Results and Discussion
30(7)
3.5.1 Time to Serve Contending Voice Calls in a CP
30(4)
3.5.2 Packet Loss Rate in CFP
34(1)
3.5.3 Capacity Region of Voice
34(3)
3.6 Summary
37(2)
4 Service Differentiation over Ad Hoc WLANs
39(22)
4.1 Proportional Class Differentiation Model
39(1)
4.2 The Distributed Token-Based MAC Scheme
40(4)
4.2.1 Access Priority and Dynamic Token Passing for Voice Traffic
40(1)
4.2.2 Proportional Class Differentiation Among Data Traffic
41(2)
4.2.3 Token Initialization and Recovery of Lost Tokens
43(1)
4.3 Performance Analysis
44(8)
4.3.1 Voice Traffic Performance Analysis
44(1)
4.3.1.1 The Channel Time Occupancy Fraction of Voice Traffic
44(1)
4.3.1.2 Voice Delay
45(1)
4.3.1.3 Collision Probability of Voice Nodes from the off State to the on State
45(1)
4.3.2 Data Traffic Performance Analysis
46(1)
4.3.2.1 Data Throughput
46(1)
4.3.2.2 Data Packet Delay
47(3)
4.3.2.3 The Derivation of B*(s), H*1(s), and H*2(s)
50(2)
4.4 Numerical Results and Performance Evaluation
52(6)
4.4.1 Voice Traffic Analysis Accuracy
53(1)
4.4.2 Proportional Class Differentiation of Data Traffic
54(1)
4.4.3 Data Throughput and Delay Analysis Accuracy
55(2)
4.4.4 Channel Utilization
57(1)
4.5 Summary
58(3)
5 Dual Busy-Tone MAC for Wireless Ad Hoc Networks
61(20)
5.1 Wireless Ad Hoc Network
61(1)
5.2 The Dual Busy-Tone MAC Scheme
62(6)
5.2.1 Operation Procedure of the Proposed MAC Scheme
63(2)
5.2.2 Solution to the Hidden Terminal Problem
65(1)
5.2.3 Solution to the Exposed Terminal Problem
66(1)
5.2.4 Solution to the Priority Reversal Problem
66(1)
5.2.5 Solution to the Unfairness Problem
67(1)
5.3 Performance Analysis
68(2)
5.4 Performance Evaluation
70(9)
5.4.1 Throughput in a Scenario with Hidden Terminals
71(2)
5.4.2 Throughput in Scenarios with Exposed Terminals
73(1)
5.4.3 Priority Access
74(2)
5.4.4 Fairness
76(1)
5.4.5 Performance in Random Topologies
77(1)
5.4.6 Sensitivity of the Proposed Scheme to Carrier Sense Ranges
78(1)
5.5 Summary
79(2)
6 Collision-Free MAC for Wireless Mesh Backbones
81(22)
6.1 Wireless Mesh Network
81(1)
6.2 The Distributed MAC Scheme
82(6)
6.2.1 Distributed Time Slot Allocation
83(1)
6.2.2 Mini-slot Assignment
84(1)
6.2.3 Maximal Spatial Frequency Reuse
84(1)
6.2.4 Per-Router Fairness and Per-Flow Fairness
85(2)
6.2.5 Guaranteed Priority Access for Real-Time Traffic
87(1)
6.2.6 Congestion Avoidance
87(1)
6.3 Performance Analysis
88(5)
6.3.1 Real-Time Traffic Access Delay Bound
88(1)
6.3.2 Data Traffic Access Delay
88(3)
6.3.3 Numerical Results
91(2)
6.4 Performance Evaluation
93(8)
6.4.1 The Delay Performance for Real-Time Traffic
93(2)
6.4.2 Fairness and End-to-End Throughput of Data Flows
95(1)
6.4.3 Relay Efficiency
96(1)
6.4.4 Performance in Random Topology
97(2)
6.4.5 The Comparison of Per-Flow Fairness and Per-Router Fairness
99(1)
6.4.6 Priority Differentiation of Real-Time Packets
100(1)
6.5 Summary
101(2)
7 Conclusions
103(2)
References 105