Muutke küpsiste eelistusi

E-raamat: Distribution, Integral Transforms and Applications

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 80,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The theory of distributions is most often presented as L. Schwartz originally presented it: as a theory of the duality of topological vector spaces. Although this is a sound approach, it can be difficult, demanding deep prior knowledge of functional analysis. The more elementary treatments that are available often consider distributions as limits of sequences of functions, but these usually present the theoretical foundations in a form too simplified for practical applications.

Distributions, Integral Transforms and Applications offers an approachable introduction to the theory of distributions and integral transforms that uses Schwartz's description of distributions as linear continous forms on topological vector spaces. The authors use the theory of the Lebesgue integral as a fundamental tool in the proofs of many theorems and develop the theory from its beginnings to the point of proving many of the deep, important theorems, such as the Schwartz kernel theorem and the Malgrange-Ehrenpreis theorem. They clearly demonstrate how the theory of distributions can be used in cases such as Fourier analysis, when the methods of classical analysis are insufficient.

Accessible to anyone who has completed a course in advanced calculus, this treatment emphasizes the remarkable connections between distributional theory, classical analysis, and the theory of differential equations and leads directly to applications in various branches of mathematics.
Preface vii
Definitions and preliminaries
1(26)
The spaces D and D'
1(2)
Approximation lemmas
3(2)
Regularizations of functions
5(1)
Du Bois-Rymond's lemma
6(1)
Some density theorem
7(1)
Distributional convergence
8(1)
Algebraic operations on distributions
9(1)
Linear transformations in the space of the independent variables
10(1)
Differentiation of distributions
11(1)
Weak derivatives of locally integrable functions
12(4)
Local Sobolev spaces
16(3)
Sobolev spaces
19(2)
Differential equations of the second order with measures as coefficients
21(6)
Local properties of distributions
27(14)
Smooth partitions of unity
27(2)
Approximation of functions belonging to Wm,p(Ω) by smooth functions
29(2)
Restrictions of distributions
31(2)
Support of distributions
33(2)
Distributions of finite order
35(2)
Cartesian products of Banach spaces
37(1)
Some local representations of distributions
38(3)
Tensor products and convolution products
41(18)
Regularization of distributions
41(3)
A characterization of convolution operators
44(1)
Tensor product of distributions
45(2)
Differentiation and support of tensor product
47(1)
The theorem of kernels
48(6)
Connection between tensor product and convolution product of distributions
54(4)
Differentiation and support of convolution product
58(1)
Differential equations
59(16)
Fundamental solutions of differential equations
59(1)
The Cauchy problem for the wave equation with distribution data
60(3)
Fundamental solutions of the Laplace operator and the heat operator
63(3)
The Hormander inequalities
66(4)
L2-solvability
70(2)
Regularity properties of differential operators
72(3)
Particular types of distributions and Cauchy transforms
75(20)
Integrable distributions
75(2)
Regularization of integrable distributions
77(1)
Tensor product of integrable distributions
78(3)
DLp and D'Lp spaces
81(1)
Convolution product
82(2)
Cauchy transforms of integrable distributions
84(3)
Cauchy transforms of distributions belonging to D'Lp
87(4)
Cauchy transforms of some distributions
91(4)
Tempered distributions and Fourier transforms
95(32)
The spaces S and S'
95(2)
Tensor product of tempered distributions
97(1)
Fourier transforms of integrable functions
98(2)
Formal properties of Fourier transforms
100(2)
Fourier transforms of functions in S
102(1)
Fourier transforms of functions in L2(Rn)
103(4)
Fourier transforms of the Hermite functions
107(1)
Fourier transforms of tempered distributions
108(1)
Formal properties of Fourier transforms of tempered distributions
109(1)
Fourier transforms of integrable distributions
110(2)
Fourier transforms of square integrable distributions
112(2)
Determining Fourier transforms of square integrable distributions
114(2)
Hilbert transforms
116(1)
Carleman transforms
117(2)
The Paleya--Wiener type theorems
119(2)
The Cauchy semigroup
121(2)
The Cauchy problem for the heat equation
123(4)
Orthogonal expansions of distributions
127(12)
The Poisson summation formula
127(1)
Periodic distributions
128(3)
The spaces A and A'
131(3)
Cauchy transforms of elements of A'
134(2)
The Wiener expansion of square integrable distributions
136(3)
Appendix. Sequential completeness of some spaces 139(4)
Subject index 143(2)
Notes and references to the literature 145(2)
Bibliography 147(2)
Index of symbols 149


Kierat, W.; Sztaba, Urszula