Muutke küpsiste eelistusi

E-raamat: Distributions: Generalized Functions with Applications in Sobolev Spaces

  • Formaat: 872 pages
  • Sari: De Gruyter Textbook
  • Ilmumisaeg: 29-May-2012
  • Kirjastus: De Gruyter
  • Keel: eng
  • ISBN-13: 9783110269291
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 70,17 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
    • De Gruyter e-raamatud
  • Formaat: 872 pages
  • Sari: De Gruyter Textbook
  • Ilmumisaeg: 29-May-2012
  • Kirjastus: De Gruyter
  • Keel: eng
  • ISBN-13: 9783110269291
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book grew out of a course taught in the Department of Mathematics, Indian Institute of Technology, Delhi, which was tailored to the needs of the applied community of mathematicians, engineers, physicists etc., who were interested in studying the problems of mathematical physics in general and their approximate solutions on computer in particular. Almost all topics which will be essential for the study of Sobolev spaces and their applications in the elliptic boundary value problems and their finite element approximations are presented. Also many additional topics of interests for specific applied disciplines and engineering, for example, elementary solutions, derivatives of discontinuous functions of several variables, delta-convergent sequences of functions, Fourier series of distributions, convolution system of equations etc. have been included along with many interesting examples.

Pulin Kumar Bhattacharyya, Indian Institute of Technology Delhi, New Delhi, India.
Preface vii
How to use this book in courses xxi
Acknowledgment xxv
Notation xxvii
1 Schwartz distributions
1(95)
1.1 Introduction: Dirac's delta function δ(x) and its properties
1(5)
1.2 Test space D (Ω) of Schwartz
6(19)
1.2.1 Support of a continuous function
6(3)
1.2.2 Space D (Ω)
9(4)
1.2.3 Space Dm (Ω)
13(1)
1.2.4 Space Dk (Ω)
13(1)
1.2.5 Properties of D (Ω)
14(11)
1.3 Space D' (Ω) of (Schwartz) distributions
25(16)
1.3.1 Algebraic dual space D* (Ω)
25(1)
1.3.2 Distributions and the space D' (Ω) of distributions on Ω
26(1)
1.3.3 Characterization, order and extension of a distribution
27(2)
1.3.4 Examples of distributions
29(11)
1.3.5 Distribution defined on test space D (Ω) of complex-valued functions
40(1)
1.4 Some more examples of interesting distributions
41(10)
1.5 Multiplication of distributions by C∞-functions
51(3)
1.6 Problem of division of distributions
54(3)
1.7 Even, odd and positive distributions
57(2)
1.8 Convergence of sequences of distributions in D' (Ω)
59(8)
1.9 Convergence of series of distributions in D' (Ω)
67(1)
1.10 Images of distributions due to change of variables, homogeneous, invariant, spherically symmetric, constant distributions
68(16)
1.10.1 Periodic distributions
75(9)
1.11 Physical distributions versus mathematical distributions
84(12)
1.11.1 Physical interpretation of mathematical distributions
84(1)
1.11.2 Load intensity
85(3)
1.11.3 Electrical charge distribution
88(2)
1.11.4 Simple layer and double layer distributions
90(4)
1.11.5 Relation with probability distribution [ 7]
94(2)
2 Differentiation of distributions and application of distributional derivatives
96(115)
2.1 Introduction: an integral definition of derivatives of C1-functions
96(4)
2.2 Derivatives of distributions
100(2)
2.2.1 Higher-order derivatives of distributions T
101(1)
2.3 Derivatives of functions in the sense of distribution
102(17)
2.4 Conditions under which the two notions of derivatives of functions coincide
119(2)
2.5 Derivative of product αT with T D' (Ω) and α C∞ (Ω)
121(4)
2.6 Problem of division of distribution revisited
125(6)
2.7 Primitives of a distribution and differential equations
131(10)
2.8 Properties of distributions whose distributional derivatives are known
141(1)
2.9 Continuity of differential operator α D (Ω) → D' (Ω)
142(7)
2.10 Delta-convergent sequences of functions in D' (Rn)
149(5)
2.11 Term-by-term differentiation of series of distributions
154(19)
2.12 Convergence of sequences of Ck (Ω) (resp. Ck,λ (Ω) in D' (Ω)
173(1)
2.13 Convergence of sequences of Lp (Ω), 1 ≤ p ≤ ∞, in D' (Ω)
173(2)
2.14 Transpose (or formal adjoint) of a linear partial differential operator
175(2)
2.15 Applications: Sobolev spaces Hm(Ω), Wm,p(Ω)
177(34)
2.15.1 Sobolev Spaces
177(1)
2.15.2 Space Hm(Ω)
178(4)
2.15.3 Examples of functions belonging to or not belonging to Hm(Ω)
182(2)
2.15.4 Separability of Hm(Ω)
184(2)
2.15.5 Generalized Poincare inequality in Hm(Ω)
186(1)
2.15.6 Space Hm0(Ω)
187(4)
2.15.7 Space H-m(Ω)
191(1)
2.15.8 Quotient space Hm(Ω)/M
191(2)
2.15.9 Quotient space Hm(Ω)/Pm-1
193(1)
2.15.10 Other equivalent norms in Hm (Ω)
194(1)
2.15.11 Density results
195(1)
2.15.12 Algebraic inclusions (⊂) and imbedding (→) results
195(1)
2.15.13 Space Wm,p(Ω) with m N, 1 ≤ p ≤ ∞
196(4)
2.15.14 Space Wm'p(Ω), 1 ≤ p < ∞
200(3)
2.15.15 Space W-p, (Ω)
203(1)
2.15.16 Quotient space Wm,p(Ω)/M for m N, 1 ≤ p ≤ ∞
203(4)
2.15.17 Density results
207(1)
2.15.18 A non-density result
208(1)
2.15.19 Algebraic inclusion ⊂ and imbedding (→) results
209(1)
2.15.20 Space Ws,p(Ω) for arbitrary s R
209(2)
3 Derivatives of piecewise smooth functions, Green's formula, elementary solutions, applications to Sobolev spaces
211(52)
3.1 Distributional derivatives of piecewise smooth functions
211(24)
3.1.1 Case of single variable (n = 1)
211(4)
3.1.2 Case of two variables (n = 2)
215(15)
3.1.3 Case of three variables (n = 3)
230(5)
3.2 Unbounded domain Ω ⊂ Rn, Green's formula
235(3)
3.3 Elementary solutions
238(19)
3.4 Applications
257(6)
4 Additional properties of D' (Ω)
263(17)
4.1 Reflexivity of D (Ω) and density of D (Ω) in D' (Ω)
263(2)
4.2 Continuous imbedding of dual spaces of Banach spaces in D' (Ω)
265(4)
4.3 Applications: Sobolev spaces H-m(Ω), W-m,q (Ω)
269(11)
4.3.1 Space W-m,q (Ω), 1 < q ≤ ∞, m N
273(7)
5 Local properties, restrictions, unification principle, space ε'(Rn) of distributions with compact support
280(18)
5.1 Null distribution in an open set
280(1)
5.2 Equality of distributions in an open set
280(1)
5.3 Restriction of a distribution to an open set
280(3)
5.4 Unification principle
283(2)
5.5 Support of a distribution
285(1)
5.6 Distributions with compact support
286(1)
5.7 Space ε'(Rn) of distributions with compact support
287(9)
5.7.1 Space ε(Rn)
287(1)
5.7.2 Space ε'(Rn)
288(8)
5.8 Definition of (T, ø) for ø C ∞ (Rn) and T D' (Rn) with non-compact support
296(2)
6 Convolution of distributions
298(85)
6.1 Tensor product
298(5)
6.2 Convolution of functions
303(12)
6.3 Convolution of two distributions
315(12)
6.4 Regularization of distributions by convolution
327(2)
6.5 Approximation of distributions by C∞-functions
329(2)
6.6 Convolution of several distributions
331(2)
6.7 Derivatives of convolutions, convolution of distributions on a circle Γ and their Fourier series representations on Γ
333(16)
6.8 Applications
349(15)
6.9 Convolution equations (see also Section 8.7,
Chapter 8)
364(11)
6.10 Application of convolutions in electrical circuit analysis and heat flow problems
375(8)
6.10.1 Electric circuit analysis problem [ 7]
375(5)
6.10.2 Excitations and responses defined by several functions or distributions [ 7]
380(3)
7 Fourier transforms of functions of L1(Rn) and S(Rn)
383(40)
7.1 Fourier transforms of integrable functions in L1 (Rn)
383(22)
7.2 Space S(Rn) of infinitely differentiable functions with rapid decay at infinity
405(7)
7.2.1 Space S(Rn)
407(5)
7.3 Continuity of linear mapping from S(Rn) into S(Rn)
412(1)
7.4 Imbedding results
413(2)
7.5 Density results
415(2)
7.6 Fourier transform of functions of S(Rn)
417(1)
7.7 Fourier inversion theorem in S(Rn)
418(5)
8 Fourier transforms of distributions and Sobolev spaces of arbitrary order Hs(Rn)
423(289)
8.1 Motivation for a possible definition of the Fourier transform of a distribution
423(1)
8.2 Space S'(Rn) of tempered distributions
424(11)
8.2.1 Tempered distributions
424(2)
8.2.2 Space S'(Rn)
426(1)
8.2.3 Examples of tempered distributions of S'(Rn)
426(3)
8.2.4 Convergence of sequences in S'(Rn)
429(3)
8.2.5 Derivatives of tempered distributions
432(3)
8.3 Fourier transform of tempered distributions
435(10)
8.3.1 Fourier transforms of Dirac distributions and their derivatives
438(2)
8.3.2 Inversion theorem for Fourier transforms on S'(Rn)
440(1)
8.3.3 Fourier transform of even and odd tempered distributions
441(4)
8.4 Fourier transform of distributions with compact support
445(5)
8.5 Fourier transform of convolution of distributions
450(8)
8.5.1 Fourier transforms of convolutions
451(7)
8.6 Derivatives of Fourier transforms and Fourier transforms of derivatives of tempered distributions
458(18)
8.7 Fourier transform methods for differential equations and elementary solutions in S'(Rn)
476(16)
8.8 Laplace transform of distributions on R
492(10)
8.8.1 Space D'+
492(4)
8.8.2 Distribution T-1 D'+ (see also convolution algebra A = D'+ (6.9.15b))
496(1)
8.8.3 Inverse L-1 of Laplace transform L
497(5)
8.9 Applications
502(44)
8.9.1 Sobolev spaces Hs(Rn)
502(1)
8.9.2 Imbedding result
503(4)
8.9.3 Sobolev spaces Hm(Rn) of integral order m on Rn
507(5)
8.9.4 Sobolev's Imbedding Theorem (see also imbedding results in Section 8.12)
512(9)
8.9.5 Imbedding result: S(Rn) Hs(Rn)
521(1)
8.9.6 Density results Hs(Rn)
522(1)
8.9.7 Dual space (Hs(Rn))'
523(3)
8.9.8 Trace properties of elements of Hs(Rn)
526(20)
8.10 Sobolev spaces on Ω ≠ Rn revisited
546(59)
8.10.1 Space Hs(Ω) with s R, Ω Rn
546(4)
8.10.2 m-extension property of Ω
550(8)
8.10.3 m-extension property of Rn+
558(11)
8.10.4 m-extension property of Cm-regular domains Ω
569(4)
8.10.5 Space Hs(Ω) with s R+, Ω Rn
573(5)
8.10.6 Density results in Hs(Ω)
578(1)
8.10.7 Dual space H-s(Ω)
579(1)
8.10.8 Space Hs0(Ω) with s > 0
579(1)
8.10.9 Space H-s(Ω) with s > 0
580(1)
8.10.10 Space Ws,p(Ω) for real s > 0 and 1 ≤ p < ∞
580(5)
8.10.11 Space Hs00(Ω) with s > 0
585(6)
8.10.12 Dual space (Hs00 (Ω))' for s > 0
591(1)
8.10.13 Space Ws,p00 (Ω) for s > 0, 1 < p < ∞
591(2)
8.10.14 Restrictions of distributions in Sobolev spaces
593(5)
8.10.15 Differentiation of distributions in Hs(Ω) with s R
598(3)
8.10.16 Differentiation of distributions u Hs(Ω) with s > 0
601(4)
8.11 Compactness results in Sobolev spaces
605(12)
8.11.1 Compact imbedding results in Hs (Ω), Hs0(Ω) and Hs00(Ω)
616(1)
8.12 Sobolev's imbedding results
617(17)
8.12.1 Compact imbedding results
632(2)
8.13 Sobolev spaces Hs (Γ), Ws,p(Γ) on a manifold boundary Γ
634(17)
8.13.1 Surface integrals on boundary Γ of bounded Ω ⊂ Rn
634(3)
8.13.2 Alternative definition of Hs (Γ) with Γ Cm-class (resp. C∞-class)
637(1)
8.13.3 Space Hs(Γ) (s > 0) with Γ in Cm-class (resp. C∞-class)
638(3)
8.13.4 Sobolev spaces on boundary curves Γ in R2
641(10)
8.13.5 Spaces Hs0(Γi), Hs00(Γi) for polygonal sides Γi C∞-class, 1 ≤ i ≤ N
651(1)
8.14 Trace results in Sobolev spaces on Ω Rn
651(61)
8.14.1 Trace results in Hm(Rn+)
652(2)
8.14.2 Trace results in Hm∞ with bounded domain Ω Rn
654(16)
8.14.3 Trace results in Ws,p-spaces
670(2)
8.14.4 Trace results for polygonal domains Ω ⊂ R2
672(13)
8.14.5 Trace results for bounded domains with curvilinear polygonal boundary Γ in R2
685(1)
8.14.6 Traces of normal components in Lp (div; Ω)
686(5)
8.14.7 Trace theorems based on Green's formula
691(19)
8.14.8 Traces on Γ0 ⊂ Γ
710(2)
9 Vector-valued distributions
712(19)
9.1 Motivation
712(1)
9.2 Vector-valued functions
712(3)
9.3 Spaces of vector-valued functions
715(3)
9.4 Vector-valued distributions
718(5)
9.5 Derivatives of vector-valued distributions
723(1)
9.6 Applications
724(7)
9.6.1 Space E(0,T;V,W)
725(1)
9.6.2 Hilbert space W1(0,T;V)
725(3)
9.6.3 Hilbert space W2(0,T;V)
728(1)
9.6.4 Green's formula
729(2)
A Functional analysis (basic results)
731(40)
A.0 Preliminary results
731(10)
A.0.1 An important result on logical implication (⇒) and non-implication ()
731(1)
A.0.2 Supremum (l.u.b.) and infimum (g.l.b.)
732(1)
A.0.3 Metric spaces and important results therein
732(3)
A.0.4 Important subsets of a metric space X ≡ (X, d)
735(2)
A.0.5 Compact sets in Rn with the usual metric d2
737(1)
A.0.6 Elementary properties of functions of real variables
738(1)
A.0.7 Limit of a function at a cluster point x0 Rn
738(1)
A.0.8 Limit superior and limit inferior of a sequence in R
739(1)
A.0.9 Pointwise and uniform convergence of sequences of functions
740(1)
A.0.10 Continuity and uniform continuity of f F(Ω)
740(1)
A.1 Important properties of continuous functions
741(2)
A.1.1 Some remarkable properties on compact sets in Rn
741(1)
A.1.2 C∞0 (Ω)-partition of unity on compact set K ⊂⊂ Ω ⊂ Rn
741(1)
A.1.3 Continuous extension theorems
741(2)
A.2 Finite and infinite dimensional linear spaces
743(5)
A.2.1 Linear spaces
743(3)
A.2.2 Linear functionals
746(1)
A.2.3 Linear operators
747(1)
A.3 Normed linear spaces
748(2)
A.3.1 Semi-norm and norm
748(2)
A.3.2 Closed subspace, dense subspace, Banach space and its separability
750(1)
A.4 Banach spaces of continuous functions
750(3)
A.4.1 Banach spaces C0(Ω), Ck(Ω)
750(3)
A.5 Banach spaces C0'λ(Ω), 0 < λ < 1, of Holder continuous functions
753(3)
A.5.1 Holder continuity and Lipschitz continuity
753(1)
A.5.2 Holder space C0,λ(Ω)
754(1)
A.5.3 Space Ck,λ (Ω), 0 < λ ≤ 1
754(2)
A.6 Quotient space V/M
756(1)
A.7 Continuous linear functionals on normed linear spaces
756(4)
A.7.1 Space V'
756(1)
A.7.2 Hahn-Banach extension of linear functionals in analytic form
757(1)
A.7.3 Consequences of the Hahn-Banach theorem in normed linear spaces
758(2)
A.8 Continuous linear operators on normed linear spaces
760(3)
A.8.1 Space L (V;W)
760(1)
A.8.2 Continuous extension of continuous linear operators by density
761(1)
A.8.3 Isomorphisms and isometric isomorphisms
762(1)
A.8.4 Graph of an operator A L(V; W) and graph norm
762(1)
A.9 Reflexivity of Banach spaces
763(1)
A.10 Strong, weak and weak-* convergence in Banach space V
763(1)
A.10.1 Strong convergence ↑
763(1)
A.10.2 Weak convergence ↑
764(1)
A.10.3 Weak-* convergence ↑ * in Banach space V'
764(1)
A.11 Compact linear operators in Banach spaces
764(1)
A.12 Hilbert space V
765(3)
A.13 Dual space V' of a Hilbert space V, reflexivity of V
768(1)
A.14 Strong, weak and weak-* convergences in a Hilbert space
769(1)
A.15 Self-adjoint and unitary operators in Hilbert space V
769(1)
A.16 Compact linear operators in Hilbert spaces
769(2)
B Lp -spaces
771(32)
B.1 Lebesgue measure μ on Rn
771(5)
B.1.1 Lebesgue-measurable sets in Rn
771(1)
B.1.2 Sets with zero (Lebesgue) measure in Rn
772(3)
B.1.3 Property P holds almost everywhere (a.e.) on Ω
775(1)
B.2 Space M(Ω) of Lebesgue-measurable functions on Ω
776(2)
B.2.1 Measurable functions and space M(Ω)
776(2)
B.2.2 Pointwise convergence a.e. on Ω
778(1)
B.3 Lebesgue integrals and their important properties
778(10)
B.3.1 Lebesgue integral of a bounded function on bounded domain Ω
778(2)
B.3.2 Important properties of Lebesgue integrals (Kolmogorov and Fomin [ 20])
780(4)
B.3.3 Some important approximation and density results in L1 (Ω)
784(4)
B.4 Spaces Lp(Ω), 1 ≤ p ≤ ∞
788(15)
B.4.1 Basic properties
788(6)
B.4.2 Dual space (Lp(Ω))' of Lp(Ω) for 1 ≤ p ≤ ∞
794(3)
B.4.3 Space L2(Ω)
797(1)
B.4.4 Some negative properties of L∞(Ω)
798(1)
B.4.5 Some nice properties of L∞(Ω)
799(1)
B.4.6 Space Lploc(Ω) inclusion results
799(4)
C Open cover and partition of unity
803(5)
C.1 C∞0(Ω)-partition of unity theorem for compact sets
803(5)
D Boundary geometry
808(11)
D.1 Boundary geometry
808(4)
D.1.1 Locally one-sided and two-sided bounded domains (Ω)
808(1)
D.1.2 Star-shaped domain (Ω)
808(1)
D.1.3 Cone property and uniform cone property
809(2)
D.1.4 Segment property
811(1)
D.2 Continuity and differential properties of a boundary
812(4)
D.2.1 Continuity and differential properties
812(1)
D.2.2 Open cover {Γr}Nr=1 of Γ, local coordinate systems {ri}n i =1 and mappings {ør}N r=1
813(1)
D.2.3 Properties of the mappings ør: Rn-1 → R, 1 ≤ r ≤ N
814(2)
D.3 Alternative definition of locally one-sided domain
816(1)
D.4 Alternative definition of continuity and differential properties of (Ω) as a manifold in Rn
817(1)
D.5 Atlas/local charts of Γ
818(1)
Bibliography 819(4)
Index 823
Pulin Kumar Bhattacharyya, Indian Institute of Technology Delhi, New Delhi, India.