Muutke küpsiste eelistusi

E-raamat: Doing Statistical Analysis: A Student's Guide to Quantitative Research

(Inland Norway University of Applied Sciences, Norway)
  • Formaat: 266 pages
  • Ilmumisaeg: 29-Jul-2022
  • Kirjastus: Routledge
  • Keel: eng
  • ISBN-13: 9781000620641
  • Formaat - PDF+DRM
  • Hind: 64,99 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 266 pages
  • Ilmumisaeg: 29-Jul-2022
  • Kirjastus: Routledge
  • Keel: eng
  • ISBN-13: 9781000620641

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Doing Statistical Analysis looks at three kinds of statistical research questions – descriptive, associational, and inferential – and shows students how to conduct statistical analyses and interpret the results. Keeping equations to a minimum, it uses a conversational style and relatable examples such as football, COVID-19, and tourism, to aid understanding. Each chapter contains practice exercises, and a section showing students how to reproduce the statistical results in the book using Stata and SPSS. Digital supplements consist of data sets in Stata, SPSS, and Excel, and a test bank for instructors. Its accessible approach means this is the ideal textbook for undergraduate students across the social and behavioral sciences needing to build their confidence with statistical analysis.

Doing Statistical Analysis looks at three kinds of statistical research questions – descriptive, associational and inferential – and shows students how to conduct statistical analyses and interpret the results.
Acknowledgments ix
1 What Is Statistical Analysis from a Research Perspective?
1(10)
1.1 A Statistical Association: COVID-19 Spread and Residential Property Prices
1(2)
1.2 Why Do Statistical Analysis in Research? The Book's Purpose and Pedagogical Approach
3(2)
1.3 Three Types of Statistical Research Questions: Descriptive, Associational, and Inferential
5(1)
1.4 Some Key Concepts You Really Should Understand
5(3)
1.5
Chapter Summary, Key Learning Points, and the Organization of the Rest of the Book
8(3)
Notes
10(1)
2 Descriptive Research Questions
11(46)
2.1 Introduction and
Chapter Overview
11(1)
2.2 What is Typical? Three Measures of Central Tendency: Mean, Median, and Mode
11(9)
2.3 Variables' Measurement Levels: Continuous or Categorical Variables
20(5)
2.4 Ordinal Variables: A Third and Special-Case Measurement Level
25(2)
2.5 Visual Presentation of Descriptive Statistics: Graphs
27(3)
2.6 The Concept of Variation: Statistical Spread for Continuous Variables
30(5)
2.7 Foreshadowing Associational Research Questions: Descriptive Statistics for Subgroups
35(1)
2.8
Chapter Summary, Key Learning Points, and Further Reading
35(2)
2.9 Executing Statistical Commands: Do-Files in Stata and Syntax-Files in SPSS
37(10)
2.10
Chapter Exercises with Solutions
47(10)
Notes
50(2)
Appendix A Christmas Beer Data
52(1)
Appendix B Soccer Data
53(2)
Appendix C Student Exercise Data
55(2)
3 Associational Research Questions I: Bivariate Analysis
57(36)
3.1 Introduction: The Association between Two Variables, x and y
57(1)
3.2 A Categorical x and a Categorical y: Cross-Tabulation
57(4)
3.3 A Categorical x and a Continuous y: ANOVA
61(3)
3.4 A Continuous x and a Continuous y: Regression Analysis
64(7)
3.5 An Ordinal y and Bivariate Analysis
71(3)
3.6 The Limitations of Bivariate Analysis: The Need for Statistical Control for a Third Variable
74(1)
3.7 Experimental Control for a Third (and Fourth) Variable
75(1)
3.8
Chapter Summary, Key Learning Points, and Further Reading
76(1)
3.9 Do-Files in Stata and Syntax-Files in SPSS
77(8)
3.10
Chapter Exercises with Solutions
85(8)
Notes
91(2)
4 Associational Research Questions II: Multiple Regression
93(56)
4.1 Introduction and
Chapter Overview
93(1)
4.2 Statistical Control for Observational Data: Two Examples
93(7)
4.3 The Multiple Regression Model and R2
100(4)
4.4 Non-Linear Effects
104(6)
4.5 Interaction Effects (Moderator Effects)
110(5)
4.6 Regression on Experimental Data
115(4)
4.7 A Dummy y
119(6)
4.8
Chapter Summary, Key Learning Points, and Further Reading
125(1)
4.9 Do-Files in Stata and Syntax-Files in SPSS
125(11)
4.10
Chapter Exercises with Solutions
136(13)
Notes
143(2)
Appendix A Student Exercise Motive Data
145(2)
Appendix B Student Tourism Data
147(1)
Appendix C Red Wine Data
148(1)
5 Inferential Research Questions
149(47)
5.1 Introduction and
Chapter Overview
149(1)
5.2 Samples, Populations, and Random Sampling
149(2)
5.3 Repeated Sampling and the Normal Distribution
151(4)
5.4 The 95 Percent CI for Descriptive Statistics: Means and Proportions
155(3)
5.5 The 95 Percent CI for Variable Associations
158(3)
5.6 Verifying That Random Sampling and the Central Limit Theorem Work as Promised
161(3)
5.7 Hypothesis Testing and the Assessment of Statistical Significance
164(11)
5.8 Critical Aspects of Significance Testing
175(3)
5.9
Chapter Summary, Key Learning Points, and Further Reading
178(1)
5.10 Do-Files in Stata and Syntax-Files in SPSS
179(6)
5.11
Chapter Exercises with Solutions
185(11)
Notes
193(3)
6 Doing Quantitative Research: Some Tricks of the Trade
196(52)
6.1 Introduction and
Chapter Overview
196(1)
6.2 Creating, Recoding, and Labeling New Variables
196(3)
6.3 Creating a New Variable by Combining Existing Variables
199(2)
6.4 Missing Data and What to Do about Them
201(8)
6.5 Outliers: When Too Much Information Causes Trouble
209(3)
6.6 The Assumptions of Regression Analysis
212(9)
6.7 Effect Sizes
221(3)
6.8 How to Present and Communicate Statistical-Association Results
224(7)
6.9
Chapter Summary, Key Learning Points, and Further Reading
231(1)
6.10 Statistical Commands: Do-Files in Stata and Syntax-Files in SPSS
232(6)
6.11
Chapter Exercises with Solutions
238(10)
Notes
246(2)
Appendix A Female Student Weight Data 248(1)
References 249(2)
Index 251
Christer Thrane holds a PhD in Sociology and is Professor at Inland Norway University of Applied Science Inland School of Business and Social Sciences. His research interests include quantitative modeling studies in leisure, sports, and tourism. He has 25 years of experience teaching quantitative research methods, and he has written several textbooks on this topic.