Muutke küpsiste eelistusi

E-raamat: Doping in Conjugated Polymers

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 143,20 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"This book responds to the growing interest in conjugated polymer-dopant interaction across disciplines. The first book dedicated to the subject, it offers an A to Z overview, detailing doping interaction, dopant types, doping techniques, influence of dopant on applications, and more. It explains how the performances of these polymers are influenced by the nature of dopants and their level of distribution within the polymer, showing how the electrochemical, mechanical, and optical properties of the dopedconjugated polymers can be tailored by various means. Doping at the nano scale is also examined"--

Polymers that are intrinsically conductive are called conjugated polymers, says Kar (applied chemistry, Birla Institute of Technology, India), but they are not conductive enough to replace traditional semiconductors unless they are doped. He introduces student, research, and practicing chemists to the theory and practice. His topics include a classification of dopants for the conjugated polymer, the role of dopants on the conduction of conjugated polymers, some special classes of dopants for conjugated polymers, and recent and future trends of doping in conjugated polymers. Annotation ©2013 Book News, Inc., Portland, OR (booknews.com)

Conjugated polymers have a combination of a metallic property (conductivity) and polymeric properties; doping makes the conjugated polymer semiconducting ranging from insulating to low conducting. The doping process is a tested effective method to produce conducting polymers as semiconducting material and provides a substitute for inorganic semiconductors. The recent and rapid growth of interest in conjugated polymer-dopant interaction has been stimulated by a cross-disciplinary group of investigators: chemists, electrochemists, biochemists, experimental and theoretical physicists, electronic and electrical engineers.

Doping in Conjugated Polymers is the first book to be dedicated to the subject and offers an A to Z overview. It details doping interaction, dopant types, doping techniques, influence of dopant on applications etc. It explains how the performances of doped conjugated polymers are greatly influenced by the nature of dopants and their level of distribution within the polymer, and shows how the electrochemical, mechanical, and optical properties of the doped conjugated polymers can be tailored by controlling the size and mobility of the dopants counter ions.

The book also examines doping at the nano scale in particular with carbon nanotubes.

Acknowledgement xi
Preface xiii
1 Introduction to Doping in Conjugated Polymer
1(18)
1.1 Introduction
1(3)
1.2 Molecular Orbital Structure of Conjugated Polymer
4(3)
1.3 Possibility of Electronic Conduction in Conjugated Polymer
7(2)
1.4 Necessity of Doping in Conjugated Polymer
9(3)
1.5 Concept of Doping in Conjugated Polymer
12(5)
1.5.1 Concept of Secondary Doping in Doped Conjugated Polymer
14(1)
1.5.2 Concept of Co-doping in Conjugated Polymer
15(2)
1.6 Doping as Probable Solution
17(2)
2 Classification of Dopants for the Conjugated Polymer
19(28)
2.1 Introduction
19(1)
2.2 Classification of Dopant According to Electron Transfer
20(11)
2.2.1 p-Type Dopant
30(1)
2.2.2 n-Type Dopant
30(1)
2.3 Classification of Dopant According to Chemical Nature
31(9)
2.3.1 Inorganic Dopant
33(2)
2.3.2 Organic Dopant
35(3)
2.3.3 Polymeric Dopant
38(2)
2.4 Classification of Dopant According to Doping Mechanism
40(7)
2.4.1 Ionic Dopant or Redox Dopant
40(2)
2.4.2 Non-redox Dopant or Neutral Dopant
42(1)
2.4.3 Self-dopant
43(2)
2.4.4 Induced Dopant
45(2)
3 Doping Techniques for the Conjugated Polymer
47(16)
3.1 Introduction
47(1)
3.2 Electrochemical Doping
48(3)
3.2.1 Electrochemical Doping during Polymerization
50(1)
3.2.2 Electrochemical Doping after Polymerization
51(1)
3.3 Chemical Doping
51(5)
3.3.1 Gaseous Doping
52(2)
3.3.2 Solution Doping
54(2)
3.4 In-situ doping
56(3)
3.5 Radiation-Induced Doping or Photo Doping
59(2)
3.6 Charge Injection Doping
61(2)
4 Role of Dopant on the Conduction of Conjugated Polymer
63(18)
4.1 Introduction
63(3)
4.2 Charge Defects within Doped Conjugated Polymer
66(3)
4.2.1 Soliton
66(2)
4.2.2 Polaron
68(1)
4.2.3 Bipolaron
68(1)
4.3 Charge Transport within the Doped Conjugated Polymer
69(5)
4.3.1 Electronic Parameter Responsible for Charge Transport
70(2)
4.3.2 Charge Transport Mechanism
72(2)
4.4 Migration of Dopant Counter Ions
74(7)
4.4.1 Electrical Potential Difference and Redox-Potential Gradient
74(2)
4.4.2 Dopant Concentration Gradient or Doping Level
76(5)
5 Influence of Properties of Conjugated Polymer on Doping
81(16)
5.1 Introduction
81(1)
5.2 Conducting Property
82(2)
5.3 Spectroscopic Property
84(5)
5.3.1 UV-VIS Spectroscopy (Optical Property)
85(1)
5.3.2 FTIR Spectroscopy
86(2)
5.3.3 NMR Spectroscopy
88(1)
5.3.4 Other Spectroscopy
88(1)
5.4 Electrochemical Property
89(3)
5.4.1 Cyclic Voltammetry
90(1)
5.4.2 Electrochemical Impedance Spectroscopy
91(1)
5.5 Thermal Property
92(2)
5.6 Structural Property
94(3)
5.6.1 Crystal Structure
95(1)
5.6.2 Morphological Structure
95(2)
6 Some Special Classes of Dopants for Conjugated Polymer
97(16)
6.1 Introduction
97(1)
6.2 Iodine and Other Halogens
98(5)
6.2.1 Principle
98(1)
6.2.2 Doping Technique
99(2)
6.2.3 Property
101(2)
6.3 Halide Doping
103(3)
6.3.1 Principle
103(2)
6.3.2 Doping Technique
105(1)
6.3.3 Property
106(1)
6.4 Protonic Acid Doping
106(4)
6.4.1 Principle
106(1)
6.4.2 Doping Technique
107(1)
6.4.3 Property
108(2)
6.5 Covalent Doping
110(3)
7 Influence of Dopant on the Applications of Conjugated Polymer
113(18)
7.1 Introduction
113(1)
7.2 Sensors
114(4)
7.2.1 Chemical Sensors
114(3)
7.2.2 Biosensors
117(1)
7.3 Actuators
118(2)
7.4 Field Effect Transistor
120(2)
7.5 Rechargeable Batteries
122(1)
7.6 Electrochromic Devices
123(3)
7.7 Optoelectronic Devices
126(1)
7.8 Others Applications
127(4)
8 Recent and Future Trends of Doping in Conjugated Polymer
131(14)
8.1 Introduction
131(2)
8.2 Doping of Nanostructured Conjugated Polymer
133(4)
8.2.1 Introduction
133(1)
8.2.2 Role of Dopant in Synthesis of Nanostructured Conjugated Polymer
133(3)
8.2.3 Property of Nanostructured Doped Conjugated Polymer
136(1)
8.3 Doping in Conjugated Polymer Nanocomposite
137(5)
8.3.1 Introduction
137(1)
8.3.2 Doping Interaction in Conjugated Polymer Composite with Nanoparticles
138(2)
8.3.3 Doping Interaction in Conjugated Polymer Composite with Carbon Nanofibers or Nanotubes
140(2)
8.4 Future Trends
142(3)
References 145(10)
Index 155
Pradip Kar obtained his PhD in 2009 from the Indian Institute of Technology, Kharagpur. He is currently an Assistant Professor in the Department of Applied Chemistry, Birla Institute of Technology, Ranchi, India, and has published more than 20 research papers in peer-reviewed journals.