ei ole lubatud
ei ole lubatud
Digitaalõiguste kaitse (DRM)
Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).
Vajalik tarkvara
Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)
PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )
Seda e-raamatut ei saa lugeda Amazon Kindle's.
Contents
Preface
Part I: Dual Quaternions
2. Algebra
2.1 Quaternion Algebra
2.2 Conjugates
2.3 Dot Products and Norms: Lengths and Angles
3. Geometry
3.1 Points and Vectors in the Space of Dual Quaternions
3.2 Planes in the Space of Dual Quaternions
3.3 Lines in the Space of Dual Quaternions
3.3.1 Plucker Coordinates
3.3.2 Dual Plucker Coordinates
3.4 Duality in the Space of Dual Quaternions
4. Rigid Motions
4.1 Rotation and Translation
4.2 Rotations about Arbitrary Lines and Screw Transformations
4.3 Screw Transformations and Rigid Motions
4.4 Rotation and Translation on Planes
4.5 Rotation and Translation on Lines
4.6 Reflections
5. Rigid Motions as Rotations in 8-Dimensions
5.1 Rigid Motions as Linear Isometries in 8-Dimensions
5.2 Renormalization
6. Screw Linear Interpolation (ScLERP)
6.1 Spherical Linear Interpolation (SLERP) Revisited
6.2 The Trigonometric Form of the Screw Transformation
6.3 ScLERP
7. Perspective and Pseudo-Perspective
7.1 Perspective in the Quaternion Algebra
7.2 Rotation, Translation, and Duality
7.3 Perspective Projection
7.4 Pseudo-Perspective
8. Visualizing Quaternions and Dual Quaternions
9. Matrices vs. Dual Quaternions
9.1 Representations and Computations with Matrices and Dual Quaternions
9.2 Converting between Matrices and Dual Quaternions 9.2.1 Rigid Motions
9.2.2 Perspective and Pseudo-Perspective
10. Insights
11. Formulas
11.1 Algebra
11.2 Geometry
11.3 Duality
11.4 Transformations
11.5 Interpolation
11.6 Conversion Formulas
Appendix: Cross Products
Part II: Clifford Algebras for Dual Quaternions
1: A Brief Review of Clifford Algebra
1. Goals of Clifford Algebra
2. A Brief Introduction to Clifford Algebra
3. Basic Products: Clifford Product, Inner Product, and Outer Product
3.1 Exterior Algebra: The Outer (Wedge) Product for Arbitrary Grades
4. Duality
4.1 Duality in the Quaternion Algebra: Cross Products and Products of Pure Quaternions
2: The Plane Model of Clifford Algebra for Dual Quaternions
2.1. Algebra
2.2. Geometry
2.2.1 Planes
2.2.2 Points and Vectors
2.2.2.1 Incidence Relation: Point on Plane
2.2.3 Lines
2.2.3.1 Lines as the Intersection of Two Planes
2.2.3.2 Lines as Bivectors
2.2.3.3 Incidence Relations for Lines
2.2.4 Duality
2.2.4.1 Duality in the Quaternion Subalgebra
2.2.4.2 Duality in the Plane Model
2.2.4.3 Lines as the Join of Two Points
2.3. Transformations: Rotors and Versors
2.3.1 Translation
2.3.2 Rotation
2.3.3 Reflection
2.3.4 Perspective and Pseudo-Perspective
2.4. Insights
2.5. Formulas
2.5.1 Algebra
2.5.2 Geometry
2.5.3 Rotors and Versors
2.5.4 Perspective and Pseudo-Perspective
2.6. Comparisons Between Dual Quaternions and the Plane Model of Clifford Algebra
3. The Point Model of Clifford Algebra for Dual Quaternions
3.1. Algebra
3.2. Geometry
3.2.1 Points and Vectors
3.2.2 Planes
3.2.2.1 Incidence Relation: Point on Plane
3.2.3 Duality
3.2.3.1 Duality in the Point Model
3.2.4 Lines
3.2.4.1 Lines as the Join of Two Points
3.2.4.2 Lines as Bivectors
3.2.4.3 Incidence Relations for Lines
3.2.4.4 Lines as the Intersection of Two Planes
3.3. Transformations: Rotors and Versors
3.3.1 Translation
3.3.2 Rotation
3.3.3 Reflection
3.3.4 Perspective and Pseudo-Perspective
3.4. Insights
3.5. Formulas
3.5.1 Algebra
3.5.2 Geometry
3.5.3 Rotors and Versors
3.5.4 Perspective and Pseudo-Perspective
3.6. Comparisons Between the Point Model and the Plane Model of Clifford Algebra
Bibliography