Muutke küpsiste eelistusi

E-raamat: Dyadic Walsh Analysis from 1924 Onwards Walsh-Gibbs-Butzer Dyadic Differentiation in Science Volume 1 Foundations: A Monograph Based on Articles of the Founding Authors, Reproduced in Full

  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Dyadic (Walsh) analysis emerged as a new research area in applied mathematics and engineering in early seventies within attempts to provide answers to demands from practice related to application of spectral analysis of different classes of signals, including audio, video, sonar, and radar signals. In the meantime, it evolved in a mature mathematical discipline with fundamental results and important features providing basis for various applications. The book will provide fundamentals of the area through reprinting carefully selected earlier publications followed by  overview of recent results concerning particular subjects in the area written by experts, most of them being founders of the field, and some of their followers. In this way, this first volume of the two volume book offers a rather complete coverage of the development of dyadic Walsh analysis, and provides a deep insight into its mathematical foundations necessary for consideration of generalizations and applications that are the subject of the second volume. The presented theory is quite sufficient to be a basis for further research in the subject area as well as to be applied in solving certain new problems or improving existing solutions for tasks in the areas which motivated development of the dyadic analysis.
1 Early History of Walsh Analysis
1(36)
William R. Wade
1.1 History of the American School of Walsh Analysis
3(34)
2 My involvement in Walsh and Dyadic Analysis
37(52)
Franz Pichler
References
39(50)
3 The Origins of the Dyadic Derivative due to James Edmund Gibbs
89(72)
Radomir S. Stankovic
Ferenc Schipp
3.1 Definition of the Gibbs Derivative
91(2)
3.2 Further Development
93(68)
References
95(66)
4 Early Contributions from the Aachen School to Dyadic Walsh Analysis with Applications to Dyadic PDEs and Approximation Theory
161(48)
Paul L. Butzer
Heinrich Josef Wagner
4.1 Butzer-Wagner Dyadic Derivative
163(1)
4.2 Further Developments
164(1)
4.3 A Dyadic PDE, the Wave Equation
165(3)
4.4 Applications to Approximation by Walsh Polynomials and Walsh-Fourier Series
168(2)
4.5 Later Contributions from Aachen
170(1)
4.6 Decimal and Dyadic Systems
171(1)
4.7 Further Suggestions for Studying Our Monograph
172(4)
References
173(3)
4.8 Publications by Members of the Aachen School of Dyadic Analysis
176(33)
5 Dyadic Derivative, Summation, Approximation
209(26)
S. Fridli
F. Schipp
5.1 Introduction
209(2)
5.2 Dyadic Derivative
211(5)
5.2.1 Dyadic derivative of functions of one variable
211(3)
5.2.2 Dyadic derivative in the multivariable case
214(1)
5.2.3 Dyadic derivative on the real line
214(1)
5.2.4 Dyadic derivative on groups
215(1)
5.3 Summation, Strong summation
216(19)
5.3.1 (C, 1) summability of Walsh--Fourier series
216(2)
5.3.2 Strong summability
218(2)
5.3.3 Summability of multivariable Walsh--Fourier series
220(1)
5.3.4 Dyadic Cesaro and Copson operators
221(1)
5.3.5 Multipliers
222(1)
References
223(12)
6 How I Started My Research in Walsh and Dyadic Analysis
235(12)
Ferenc Schipp
References
237(10)
7 My Involvement with the Dyadic Derivative
247(68)
Kees (C.W.) Onneweer
References
249(66)
8 Hardy Spaces in the Theory of Dyadic Derivative
315(32)
Ferenc Weisz
8.1 Introduction
315(1)
8.2 One-dimensional Hardy Spaces
316(2)
8.3 The One-dimensional Dyadic Derivative
318(3)
8.4 d-dimensional Hardy Spaces
321(4)
8.4.1 The Hardy Spaces Hp[ 0, 1)d
322(1)
8.4.2 The Hardy Spaces Hp[ 0,1)d
323(2)
8.5 More-dimensional dyadic derivative
325(22)
8.5.1 Restricted dyadic derivative
326(1)
8.5.2 Unrestricted dyadic derivative
326(1)
References
327(20)
9 Term by Term Dyadic Differentiation of Walsh Series
347(12)
William R. Wade
9.1 Introduction
347(1)
9.2 The original problem
348(3)
9.3 Gap series
351(1)
9.4 Rapidly converging series
352(3)
9.5 Term-by-term strong dyadic differentiation
355(4)
References
358(1)
10 Why I got Interested in Dyadic Differentiation
359(84)
William R. Wade
11 Dyadic Derivative and Walsh-Fourier Transform
443(6)
Boris I. Golubov
11.1 Introduction
443(1)
11.2 Notations and Definitions
444(1)
11.3 Lemmas
444(1)
11.4 Dyadic Differentiation and Integration of Walsh-Fourier Transform
445(4)
References
446(3)
12 How I started my research in Walsh and dyadic analysis
449(3)
Boris I. Golubov
References 452(1)
Index 453