Muutke küpsiste eelistusi

E-raamat: Dynamic Damage and Fragmentation

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat: PDF+DRM
  • Ilmumisaeg: 03-Jan-2019
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119579144
  • Formaat - PDF+DRM
  • Hind: 171,60 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 03-Jan-2019
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119579144

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Engineering structures may be subjected to extreme high-rate loading conditions, like those associated with natural disasters (earthquakes, tsunamis, rock falls, etc.) or those of anthropic origin (impacts, fluid–structure interactions, shock wave transmissions, etc.). Characterization and modeling of the mechanical behavior of materials under these environments is important in predicting the response of structures and improving designs.

This book gathers contributions by eminent researchers in academia and government research laboratories on the latest advances in the understanding of the dynamic process of damage, cracking and fragmentation. It allows the reader to develop an understanding of the key features of the dynamic mechanical behavior of brittle (e.g. granular and cementitious), heterogeneous (e.g. energetic) and ductile (e.g. metallic) materials.

Preface xiii
Chapter 1 Some Issues Related to the Modeling of Dynamic Shear Localization-assisted Failure
1(52)
Patrice Longere
1.1 Introduction
1(2)
1.2 Preliminary/fundamental considerations
3(24)
1.2.1 Localization and discontinuity
3(3)
1.2.2 Isothermal versus adiabatic conditions
6(3)
1.2.3 Sources of softening
9(13)
1.2.4 ASB onset
22(4)
1.2.5 Scale postulate
26(1)
1.3 Small-scale postulate-based approaches
27(6)
1.3.1 Material of the band viewed as an extension of the solid material behavior before ASB onset
28(1)
1.3.2 Material of the band viewed as a fluid material
29(2)
1.3.3 ASB viewed as a damage mechanism
31(1)
1.3.4 Assessment
32(1)
1.4 Embedded band-based approaches (large-scale postulate)
33(11)
1.4.1 Variational approaches
34(4)
1.4.2 Enriched finite clement kinematics
38(3)
1.4.3 Enriched constitutive model
41(2)
1.4.4 Discussion
43(1)
1.5 Conclusion
44(1)
1.6 Acknowledgments
45(1)
1.7 References
45(8)
Chapter 2 Analysis of the Localization Process Prior to the Fragmentation of a Ring in Dynamic Expansion
53(42)
Skander Elmai
Scbastien Mercier
Alain Molinari
2.1 Introduction
53(6)
2.1.1 Fragmentation experiments
54(1)
2.1.2 Fragmentation theories
54(5)
2.2 An extension of a linear stability analysis developed in [ MER 03]
59(11)
2.2.1 Position of the problem
59(1)
2.2.2 Classical linear stability analysis
60(2)
2.2.3 Evolution of the cross-section perturbation
62(3)
2.2.4 Analysis of the potential sites of necking
65(5)
2.3 Outcomes of the approach
70(19)
2.3.1 Effects of the loading velocity on neck spacing distribution
70(2)
2.3.2 Effects of an imposed dominant mode in the initial perturbation
72(11)
2.3.3 Comparison of the approach with numerical simulations
83(6)
2.4 Conclusion
89(1)
2.5 References
90(5)
Chapter 3 Gradient Damage Models Coupled With Plasticity and Their Application to Dynamic Fragmentation
95(48)
Arthur Geromel Fischer
Jean-Jacques Marigo
3.1 Introduction
95(1)
3.2 Theoretical aspects
96(26)
3.2.1 Gradient damage models
96(10)
3.2.2 Damage coupled with plasticity
106(11)
3.2.3 Dynamic gradient damage
117(5)
3.3 Numerical implementation
122(1)
3.4 Applications
123(15)
3.4.1 ID fracture
124(1)
3.4.2 Material behavior
124(2)
3.4.3 Dimensionless parameters
126(5)
3.4.4 ID period bar
131(4)
3.4.5 Cylinder under internal pressure
135(3)
3.5 Conclusion
138(1)
3.6 References
139(4)
Chapter 4 Plastic Deformation of Pure Polycrystalline Molybdenum
143(34)
Geremy J. Kleiser
Benoit Revil-Baudard
Oana Cazacu
4.1 Introduction
143(1)
4.2 Quasi-static and dynamic data on a pure polycrystalline Mo
144(14)
4.2.1 Analysis of the quasi-static uniaxial tension test results on smooth specimens
147(7)
4.2.2 Split Hopkinson pressure bar data
154(1)
4.2.3 Taylor cylinder impact data
155(3)
4.3 Constitutive model for polycrystalline Mo
158(4)
4.4 Predictions of the mechanical response
162(10)
4.4.1 FE. predictions of the quasi-static uniaxial tensile response for notched specimens
162(10)
4.5 Conclusions
172(1)
4.6 References
173(4)
Chapter 5 Some Advantages of Advanced Inverse Methods to Identify Viscoplastic and Damage Material Model Parameters
177(36)
Bertrand Langrand
Delphine Notta-Cuvier
Thomas Fourest
Eric Markiewicz
5.1 Introduction
177(3)
5.2 Experimental devices for material characterization over a large range of strain rates
180(4)
5.3 Identification of elasto-viscoplastic and damage material Parameters
184(20)
5.3.1 Direct approach for material parameter identification
184(8)
5.3.2 Inverse approaches for material parameter identification
192(12)
5.4 Conclusions
204(1)
5.5 Acknowledgments
205(1)
5.6 References
205(8)
Chapter 6 Laser Shock Experiments to Investigate Fragmentation at Extreme Strain Rates
213(24)
Thibaut de Resseguier
Didier Loison
Benjamin Jodar
Emilien Lescoute
Caroline Roland
Lo'ic Signor
Andre Dragon
6.1 Introduction
214(1)
6.2 Phenomenology of laser shock-induced fragmentation
215(2)
6.3 Spall fracture
217(5)
6.4 Microspall after shock-induced melting
222(3)
6.5 Microjetting from geometrical defects
225(5)
6.6 Conclusion
230(1)
6.7 References
231(6)
Chapter 7 One-dimensional Models for Dynamic Fragmentation of Brittle Materials
237(26)
David Cereceda
Nitin Daphalapurkar
Lori Graham Brady
7.1 Introduction
237(5)
7.2 Methods
242(2)
7.3 Results
244(14)
7.3.1 Mono-phase materials
244(7)
7.3.2 Multi-phase materials
251(7)
7.4 Conclusions
258(1)
7.5 References
259(4)
Chapter 8 Damage and Wave Propagation in Brittle Materials
263(34)
Quriaky Gomez
Jia Li
Loan R. Ionescu
8.1 Introduction
263(1)
8.2 Short overview of damage models
264(11)
8.2.1 Effective elasticity of a cracked solid
266(2)
8.2.2 Damage evolution
268(7)
8.3 1D wave propagation
275(5)
8.3.1 Problem statement
276(2)
8.3.2 A single family of micro-cracks
278(2)
8.3.3 Three families of micro-cracks
280(1)
8.4 Two-dimensional anti-plane wave propagation
280(6)
8.4.1 Anisotropic damage under isotropic loading
281(3)
8.4.2 Anisotropic loading of an initial isotropic damaged material
284(2)
8.5 Blast impact and damage evolution
286(5)
8.6 Conclusions and perspectives
291(1)
8.7 Acknowledgments
292(1)
8.8 References
292(5)
Chapter 9 Discrete Element Anal/sis to Predict Penetration and Perforation of Concrete Targets Struck by Rigid Projectiles
297(18)
Laurent Daudeville
Andria Antoniou
Ahmad Omar
Philippe Marin
Serguei Potapov
Christophe Pontiroli
9.1 Introduction
297(2)
9.2 Discrete element model
299(8)
9.2.1 Definition of interactions
299(1)
9.2.2 Constitutive behavior of concrete: Discrete element model
300(1)
9.2.3 Linear elastic constitutive behavior
301(1)
9.2.4 Nonlinear constitutive behavior
302(3)
9.2.5 Strain rate dependency
305(2)
9.3 Simulation of impacts
307(4)
9.3.1 Impact experiments
307(1)
9.3.2 Modeling of impact experiments
308(3)
9.4 Conclusion
311(1)
9.5 References
311(4)
Chapter 10 Bifurcation Micromechanics in Granular Materials
315(24)
Antoine Wautier
Jiaying Liu
Francois Nicot
Felix Darve
10.1 Introduction
315(3)
10.2 Application of the second-order work criterion at representative volume element scale
318(4)
10.3 From macro to micro analysis of instability
322(9)
10.3.1 Local second-order work and contact sliding
322(1)
10.3.2 Role of strong contact network in stable and unstable loading directions
323(3)
10.3.3 From contact sliding to mesoscale mechanisms
326(3)
10.3.4 Micromechanisms leading to bifurcation at the representative volume element scale
329(2)
10.4 Diffuse and localized failure in a unified framework
331(3)
10.4.1 Diffuse and localized failure pattern
331(1)
10.4.2 Common micromechanisms and microstructures
332(2)
10.5 Conclusion
334(1)
10.6 References
335(4)
Chapter 11 Influence of Specimen Size on the Dynamic Response of Concrete
339(26)
Xu Nie
William F. Heard
Bradley E. Martin
11.1 Introduction
339(2)
11.2 Materials and specimens
341(2)
11.3 Experimental techniques
343(7)
11.3.1 Kolsky compression bar theory and set-up
343(2)
11.3.2 Pulse shaping technique
345(5)
11.4 Results and discussion
350(10)
11.4.1 Pulse shaper design for Kolsky compression bar systems
350(5)
11.4.2 Rate and specimen size effect on failure strength
355(5)
11.5 Conclusion
360(2)
11.6 Acknowledgments
362(1)
11.7 References
362(3)
Chapter 12 Shockless Characterization of Ceramics Using High-Pulsed Power Technologies
365(22)
Jean-Luc Zinszner
Benjamin Erzar
Pascal Forquin
12.1 Introduction
365(3)
12.1.1 Presentation of the silicon carbide grades
367(1)
12.2 Principle of the GEPI generator
368(2)
12.3 Dynamic compression of ceramics
370(4)
12.3.1 Lagrangian analysis of velocity profiles
371(1)
12.3.2 Experimental results
372(2)
12.4 Dynamic tensile strength of ceramics
374(6)
12.4.1 Experimental methodology and data processing
375(2)
12.4.2 Characterization of two silicon carbide grades
377(1)
12.4.3 Post-mortem analyses of damaged samples
378(2)
12.5 Conclusions
380(1)
12.6 Acknowledgments
381(1)
12.7 References
381(6)
Chapter 13 A Eulerian Level Set-based Framework for Reactive Meso-scale Analysis of Heterogeneous Energetic Materials
387(30)
Nirmal Kumar Rai
H.S. Udaykumar
13.1 Introduction
387(3)
13.2 Numerical framework
390(8)
13.2.1 Governing equations
390(1)
13.2.2 Constitutive model for HMX
390(3)
13.2.3 Reactive modeling of HMX
393(2)
13.2.4 Level set representation of embedded interface
395(1)
13.2.5 Image processing approach: Representing real geometries
395(3)
13.3 Results
398(13)
13.3.1 Grid refinement study
400(1)
13.3.2 Collapse behavior of voids present in the pressed HMX material
401(2)
13.3.3 Criticality conditions for Class 111 and Class V samples
403(2)
13.3.4 Meso-scale criticality conditions for pressed energetic materials
405(6)
13.4 Conclusions
411(1)
13.5 Acknowledgments
412(1)
13.6 References
412(5)
Chapter 14 A Well-posed Hypoelastic Model Derived From a Hyperelastic One
417(12)
Nicolas Favrie
Sergey Gavrilyuk
14.1 Introduction
417(1)
14.2 A general hyperelastic model formulation
418(2)
14.3 Evolution equation for the deviatoric part of the stress tensor: neo-Hookean solids
420(4)
14.3.1 Expression of tr(b) as a function of the invariants of S
421(2)
14.3.2 Hypoelastic formulation
423(1)
14.4 Conclusions
424(1)
14.5 Acknowledgments
425(1)
14.6 References
425(4)
Appendix A: Case a = 0.5 429(4)
List of Authors 433(4)
Index 437
David Edward Lambert is a member of the scientific and professional cadre of Senior Executives, and Chief Scientist of the Air Force Research Laboratory, Munitions Directorate, Eglin, USA.

Crystal L. Pasiliao is a Senior Research Scientist at the Air Force Research Laboratory, Munitions Directorate, Eglin, USA.

Benjamin Erzar is a Senior Research Scientist at the Commissariat à lEnergie Atomique, Gramat, France.

Benoit Revil-Baudard is a Research Scientist in the Department of Mechanical and Aerospace Engineering at the University of Florida, REEF, Shalimar, USA.

Oana Cazacu is Professor in the Department of Mechanical and Aerospace Engineering at the University of Florida, REEF, Shalimar, USA.