Muutke küpsiste eelistusi

E-raamat: Dynamics of Blood Cell Suspensions in Microflows

Edited by (CNRS, Aix Marseille Universite, France), Edited by
  • Formaat: 456 pages
  • Ilmumisaeg: 09-Dec-2019
  • Kirjastus: CRC Press
  • ISBN-13: 9781315395135
  • Formaat - PDF+DRM
  • Hind: 59,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 456 pages
  • Ilmumisaeg: 09-Dec-2019
  • Kirjastus: CRC Press
  • ISBN-13: 9781315395135

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Blood microcirculation is essential to our bodies for the successful supply of nutrients, waste removal, oxygen delivery, homeostasis, controlling temperature, wound healing, and active immune surveillance. This book provides a physical introduction to the subject and explores how researchers can successfully describe, understand, and predict behaviours of blood flow and blood cells that are directly linked to these important physiological functions. Using practical examples, this book explains how the key concepts of physics are related to blood microcirculation and underlie the dynamic behavior of red blood cells, leukocytes, and platelets. This interdisciplinary book will be a valuable reference for researchers and graduate students in biomechanics, fluid mechanics, biomedical engineering, biological physics, and medicine.

Features:

  • The first book to provide a physical perspective of blood microcirculation
  • Draws attention to the potential of this physical approach for novel applications in medicine
    • Edited by specialists in this field, with chapter contributions from subject area specialists


  • Blood microcirculation is essential to the successful supply of nutrients, waste removal, oxygen delivery, homeostasis, control of temperature, wound healing and active immune surveillance.

    Preface xv
    Contributors xix
    Chapter 1 Blood in flow. Basic concepts
    1(40)
    Etienne Loiseau
    Annie Viallat
    Manouk Abkarian
    1.1 Blood And Its Microcirculation
    2(2)
    1.1.1 Composition
    2(1)
    1.1.2 The microcirculation
    3(1)
    1.1.3 Definition of a suspension and continuum assumption for blood cell suspensions
    4(1)
    1.2 Response of a complex fluid to a mechanical stress. An intrinsic characteristic
    4(4)
    1.2.1 Newtonian fluids
    5(1)
    1.2.2 Non-Newtonian fluids or complex fluids
    5(1)
    1.2.3 Elasticity and viscoelasticity
    6(2)
    1.3 Dynamics Of Viscous Fluids
    8(4)
    1.3.1 Newtonian fluids: Navier-Stokes equation
    9(1)
    1.3.2 Stokes flow
    9(1)
    1.3.3 Flow in a tube
    10(1)
    1.3.4 Association of tubes in series and in parallel
    11(1)
    1.4 Forces Acting On Particles Moving In A Fluid
    12(3)
    1.4.1 A rigid sphere in transnational, rotational and straining flows
    12(2)
    1.4.2 A rigid ellipsoid in a shear flow: Jeffery's orbits
    14(1)
    1.4.3 Flowing particles in interaction with a static wall. The lift force
    14(1)
    1.5 Rheology Of Suspensions
    15(2)
    1.6 Rheology Of Blood
    17(2)
    1.6.1 Blood, a shear thinning fluid
    17(1)
    1.6.2 RBC-free layer
    17(1)
    1.6.3 The Fahraeus Effect and the Fahraeus-Lindqvist Effect
    18(1)
    1.7 *Relevant Concepts In Continuum Mechanics For Blood Flow
    19(7)
    1.7.1 Density and hematocrit
    19(1)
    1.7.2 Simple idea about deformation and strain
    20(1)
    1.7.3 Deformation field and formal measure of strain in a body
    21(1)
    1.7.4 Velocity field
    22(1)
    1.7.5 Acceleration in Eulerian representation and spatial derivative
    23(2)
    1.7.6 Conservation of mass and the incompressibility condition
    25(1)
    1.8 *Notion Of Traction Forces, Stress Tensor And Body Forces
    26(2)
    1.8.1 Simple idea about stress
    26(1)
    1.8.2 The formal notion of traction forces
    26(1)
    1.8.3 The formal notion of the stress tensor
    27(1)
    1.8.4 Body forces: example of gravity
    28(1)
    1.9 Conservation Of Linear Momentum And The Equations Of Motion
    28(2)
    1.10 Boundary Conditions
    30(3)
    1.10.1 Fluid-Solid interfaces: impermeability and no-slip conditions
    30(1)
    1.10.2 Fluid-Fluid interfaces
    30(3)
    1.11 Constitutive Equations
    33(2)
    1.11.1 Viscometric flows: the example of simple shear flow
    33(1)
    1.11.2 The notion of viscosity and the Newtonian fluid
    34(1)
    1.11.3 The normal stress differences
    35(1)
    1.12 *The Navier-Stokes Equations Of Fluid Motion
    35(3)
    1.12.1 Dimensional analysis and the Reynolds number
    36(1)
    1.12.2 Inertial flows: the example of Dean's flow
    37(1)
    1.12.3 Calculation of the Poiseuille flow
    37(1)
    Bibliography
    38(3)
    Chapter 2 Dynamics of suspensions of rigid particles
    41(36)
    Stany Gallier
    Elisabeth Lemaire
    2.1 Introduction
    41(1)
    2.2 Basic Concepts Of Suspension Physics
    42(12)
    2.2.1 Interactions in suspensions
    42(2)
    2.2.2 Interactions in blood flows
    44(1)
    2.2.3 Hydrodynamics of a single particle
    45(3)
    2.2.4 Particle stress and theology
    48(3)
    2.2.5 Microstructure of suspensions
    51(2)
    2.2.6 Irreversibility in suspensions
    53(1)
    2.3 Viscosity Of Suspensions
    54(3)
    2.3.1 Viscosity measurements
    55(1)
    2.3.2 Concentration dependence of the viscosity
    55(2)
    2.4 Non-Newtonian Effects
    57(7)
    2.4.1 Shear-rate dependence of viscosity
    58(4)
    2.4.2 Normal stress differences
    62(1)
    2.4.3 Confinement effects
    63(1)
    2.5 Shear-Induced Migration
    64(5)
    2.5.1 Physical description
    64(1)
    2.5.2 Migration modeling
    65(2)
    2.5.3 Segregation
    67(1)
    2.5.4 On the role of deformability
    68(1)
    2.6 Conclusions
    69(1)
    Bibliography
    69(8)
    Chapter 3 Blood as a suspension of deformable particles
    77(24)
    Michael D. Graham
    3.1 Introduction
    77(1)
    3.2 Microscale Flow Fundamentals
    78(4)
    3.2.1 Stokes equations and the Green's function
    78(2)
    3.2.2 Multipole expansion and the dipole for a force- and torque-free particle
    80(1)
    3.2.3 The stress in a suspension
    81(1)
    3.3 Dynamics Of Deformable Particles In Shear Flow
    82(3)
    3.4 Transport In Unconfined Suspensions
    85(2)
    3.4.1 Rheology
    85(1)
    3.4.2 Shear-induced diffusion
    86(1)
    3.5 Confined Suspensions
    87(7)
    3.5.1 Nonuniform cell distributions in blood flow
    87(1)
    3.5.2 Cross-stream migration phenomena
    88(1)
    3.5.3 Combined effects of migration and shear-induced diffusion a simple model
    89(5)
    3.6 Conclusion
    94(1)
    Bibliography
    94(7)
    Chapter 4 Microstructure and theology of cellular blood flow, platelet margination and adhesion
    101(24)
    Qin M. Qi
    Eric S. G. Shaqfeh
    4.1 Introduction
    102(1)
    4.2 Rheology Of Blood Suspensions
    103(1)
    4.2.1 Shear-thinning of blood
    103(1)
    4.2.2 A two-phase model for blood flow
    104(1)
    4.3 Theory Of Red Blood Cell Migration
    104(8)
    4.3.1 Overview
    104(1)
    4.3.2 Hydrodynamic lift
    105(1)
    4.3.3 Shear-induced collisions
    106(2)
    4.3.4 Red blood cell migration at steady state
    108(1)
    4.3.5 Migration timescales
    109(1)
    4.3.6 Effects of hematocrit, channel height, viscosity ratio and capillary number
    110(2)
    4.4 Model Of Platelet Adhesion
    112(1)
    4.4.1 Receptor-ligand binding
    112(1)
    4.4.2 From single bond kinetics to platelet adhesion
    112(1)
    4.5 The Role Of Red Blood Cells In Platelet Adhesion
    113(5)
    4.5.1 Platelet margination
    113(3)
    4.5.2 Platelet adhesion
    116(2)
    4.6 Red Blood Cells And Platelets In Complex Geometries
    118(2)
    4.7 Summary And Outlook
    120(1)
    Bibliography
    120(5)
    Chapter 5 Single red blood cell dynamics in shear flow and its role in hemor neology
    125(58)
    Simon Mendez
    Manouk Abkarian
    5.1 Introduction
    126(1)
    5.2 The Human Red Blood Cell And Its Mechanical Modeling
    127(11)
    5.2.1 The structure and the geometry of the red blood cell
    127(1)
    5.2.2 Viscoelastic properties of the RBC membrane
    128(6)
    5.2.3 The fluids inside and outside the red blood cell
    134(2)
    5.2.4 Fluid-structure interaction for RBC dynamics
    136(2)
    5.3 The Movements Of An Isolated Red Blood Cell In Pure Shear Flow
    138(5)
    5.3.1 Isolated red blood cells under pure shear flow: governing parameters
    138(2)
    5.3.2 The emblematic dynamics: flipping and tank-treading
    140(1)
    5.3.3 Motions in a viscous external medium
    141(1)
    5.3.4 Motions in a low-viscosity external medium
    142(1)
    5.3.5 Summary: the phase diagram
    142(1)
    5.4 Dynamics At Low Shear Rates: From Low-Order Modeling To Physical Understanding
    143(16)
    5.4.1 Shape-preserving models for the shear-plane dynamics of red blood cells in shear flow
    144(1)
    5.4.2 A 3-D shape-preserving model for the dynamics of red blood cells in shear flow
    145(4)
    5.4.3 Predictions of the theoretical shape-preserving model
    149(3)
    5.4.4 Mechanism of orbital change
    152(5)
    5.4.5 Discussion on the shape-preserving model: comparison with experiments
    157(2)
    5.5 Dynamics At High Shear Rates: Compressive Instabilities Controlled By In-Plane Elasticity
    159(2)
    5.5.1 Rolling discocyte-to-stomatocyte transition
    159(1)
    5.5.2 Swinging-to-trilobe transition
    160(1)
    5.6 On The Influence Of Red Blood Cells' Dynamical Shapes On Blood Rheology
    161(3)
    5.6.1 Influence of the hematocrit on the shape of red blood cells under shear
    161(1)
    5.6.2 Revisiting shear-thinning
    161(3)
    5.7 Conclusion
    164(1)
    5.8 Appendix: A Dictionary Of The Dynamics Of An RBC In Shear Flow
    164(7)
    5.8.1 Flipping or Tumbling
    165(1)
    5.8.2 Tank-treading
    166(1)
    5.8.3 Swinging
    167(1)
    5.8.4 Rolling
    168(1)
    5.8.5 Kayaking
    169(1)
    5.8.6 Frisbee/Hovering
    169(1)
    5.8.7 Dynamic stomatocyte
    169(2)
    5.8.8 Polylobes
    171(1)
    Bibliography
    171(12)
    Chapter 6 Aggregation and blood flow in health and disease
    183(32)
    Viviana Claverfa
    Christian Wagner
    Philippe Connes
    6.1 Introduction
    184(1)
    6.2 Possible Molecular Origin Of Physiological Rbc Aggregation
    185(4)
    6.2.1 Bridging model
    186(1)
    6.2.2 Depletion model
    187(2)
    6.3 Quantifying Interaction Forces Among Rbc
    189(3)
    6.3.1 Methods to measure RBC aggregation
    189(1)
    6.3.2 Methods to quantify single-cell adhesion strength
    189(3)
    6.4 Impact Of Aggregation On The Bulk Rheology Of Blood And Vascular Reactivity
    192(2)
    6.4.1 Bulk blood viscosity
    192(1)
    6.4.2 Vascular reactivity
    193(1)
    6.5 Pathological Red Blood Cell Aggregation
    194(1)
    6.5.1 Pathophysiological factors involved in RBC aggregation modulation
    194(1)
    6.5.2 Focus on sickle cell disease
    195(1)
    6.6 Blood Flow Structuring In Big Tubes, Viscosity Behavior And Effects Of Rbc Deformability And Aggregation
    195(3)
    6.6.1 Lift force of deformable objects
    196(1)
    6.6.2 The importance of the cell-free layer, CFL
    197(1)
    6.6.3 Impact of RBC aggregation on CFL formation
    198(1)
    6.7 Blood Flow In Small Tubes
    198(4)
    6.7.1 Flow of RBCs through small capillaries
    198(2)
    6.7.2 Hydrodynamic interaction
    200(1)
    6.7.3 Hydrodynamic versus macromolecule induced interaction
    201(1)
    6.7.4 Consequences of clusters formation on flow resistance
    202(1)
    6.8 Conclusion And Perspectives
    202(1)
    Bibliography
    203(12)
    Chapter 7 Platelet dynamics and behavior in blood flow
    215(42)
    Jawaad Sheriff
    Danny Bluestein
    7.1 Introduction
    216(4)
    7.1.1 Flow conditions in physiology, pathology, and cardiovascular devices
    216(2)
    7.1.2 Pathological flow conditions in diseases and devices
    218(2)
    7.2 Platelet Motion In Free Flow
    220(1)
    7.2.1 Platelet margination
    220(1)
    7.2.2 Platelet motion in the cell-free layer
    221(1)
    7.3 Intraplatelet Dynamics And Shape Change During Shear-Mediated Activation
    221(3)
    7.3.1 Resting and activated platelet morphology in the free flow
    222(2)
    7.3.2 Material properties of resting and activated platelets
    224(1)
    7.4 Flow-Mediated Platelet Adhesion
    224(3)
    7.4.1 Physical parameters of flow-mediated platelet adhesion
    224(1)
    7.4.2 Morphological changes under shear-mediated platelet adhesion
    225(1)
    7.4.3 Platelet spreading under flow conditions
    226(1)
    7.5 Flow-Mediated Platelet Aggregation
    227(2)
    7.5.1 Flow-mediated platelet aggregation and thrombus initiation
    228(1)
    7.5.2 Platelet aggregation in free flow
    229(1)
    7.6 Flow-Mediated Surface Receptor And Membrane Behavior
    229(3)
    7.6.1 Physical conditions for receptor-ligand interactions leading to adhesion
    230(1)
    7.6.2 Physical conditions for receptor-ligand interactions leading to aggregation and thrombus formation
    231(1)
    7.7 Numerical Implementations Of Platelet Dynamics
    232(7)
    7.7.1 Platelet transport and margination
    233(1)
    7.7.2 Flow-induced platelet deformation
    234(1)
    7.7.3 Flow-mediated platelet deposition and adhesion
    235(2)
    7.7.4 Flow-mediated aggregation and thrombus formation
    237(1)
    7.7.5 Considerations for numerical models
    238(1)
    Bibliography
    239(18)
    Chapter 8 Blood suspension in a network
    257(30)
    Sylvie Lorthois
    8.1 Background Elements About The Architectural Organization Of Microvascular Networks And Impact On Blood Flow
    258(3)
    8.2 Basic Mechanisms Of Flow Structuration In Microvascular Networks
    261(10)
    8.2.1 Structuration and rheology at vessel scale
    262(6)
    8.2.2 Phase separation at diverging microvascular bifurcations
    268(3)
    8.3 Blood Flow In Microvascular Networks
    271(9)
    8.3.1 A time-averaged network model for blood flow at network scale
    271(3)
    8.3.2 Identification of in vivo versus in vitro rheology
    274(2)
    8.3.3 Oscillatory behavior in microvascular networks
    276(4)
    8.4 Conclusion
    280(1)
    Bibliography
    281(6)
    Chapter 9 White blood cell dynamics in micro-flows
    287(24)
    Annie Viallat
    Emmanuele Heifer
    Jules Dupire
    9.1 Introduction Circulating White Blood Cells
    287(1)
    9.2 Migration To Sites Of Inflammation, The Leukocyte Cascade Adhesion
    288(2)
    9.3 Microcirculation In The Capillary Pulmonary Bed
    290(13)
    9.3.1 The biomimetic channel network
    293(1)
    9.3.2 Monocytes reach a steady-state periodic dynamic in the network
    293(2)
    9.3.3 The mechanical properties of monocytes affect their dynamics in the network
    295(2)
    9.3.4 Relevant mechanical models for monocyte dynamics
    297(3)
    9.3.5 Towards the periodic steady-state
    300(2)
    9.3.6 Steady-state. Dynamics of cell transport
    302(1)
    9.4 Conclusion
    303(1)
    Bibliography
    304(7)
    Chapter 10 Inertial Microfluidics and its applications in hematology
    311(32)
    Wonhee Lee
    10.1 Introduction
    311(2)
    10.2 Physics Of Inertial Microfluidics
    313(9)
    10.2.1 Inertial focusing of particles at finite-Re flows
    313(6)
    10.2.2 Particle effects on inertial focusing
    319(3)
    10.3 Applications
    322(9)
    10.3.1 Blood sample preparation with inertial microfluidics
    322(6)
    10.3.2 Analysis of biological cells via inertial microfluidic system
    328(3)
    10.4 Conclusion And Perspectives
    331(1)
    Bibliography
    332(11)
    Chapter 11 Microfluidic biotechnologies for hematology: separation, disease detection and diagnosis
    343(28)
    Kuan Jiang
    Chwee Teck Lim
    11.1 Introduction
    344(1)
    11.2 Microfluidic Technology
    345(1)
    11.3 Blood Components Separation
    345(13)
    11.3.1 Introduction
    345(1)
    11.3.2 General principle
    346(5)
    11.3.3 Plasma separation
    351(2)
    11.3.4 Separation of platelets
    353(2)
    11.3.5 Separation of leukocytes
    355(2)
    11.3.6 Summary
    357(1)
    11.4 Microfluidic Applications In Malaria
    358(3)
    11.4.1 Microfluidics in pre-processing blood for clinical tests
    359(1)
    11.4.2 Microfluidics for malaria detection
    360(1)
    11.4.3 Summary
    361(1)
    11.5 Cancer Diagnosis
    361(5)
    11.5.1 Microfluidics for CTC detection
    362(2)
    11.5.2 Microfluidics for ctDNA and exosome detection
    364(1)
    11.5.3 Cancer detection based on cell mechanics
    365(1)
    11.6 Conclusions And Future Outlook
    366(1)
    Bibliography
    366(5)
    Chapter 12 Blood suspensions in animals
    371(50)
    Ursula Windberger
    12.1 Blood Of Invertebrate Animals
    372(1)
    12.2 Blood Of Vertebrate Animals: Species Differences In Rbc Size And Shape
    373(5)
    12.3 Species Differences In The Molecular Structure Of Rbc Membranes
    378(2)
    12.3.1 Membrane proteins
    378(1)
    12.3.2 Membrane lipids
    379(1)
    12.4 Species Differences In The Intrinsic Properties Of Rbcs
    380(4)
    12.4.1 RBC aggregability
    380(2)
    12.4.2 RBC deformability
    382(2)
    12.5 Species Differences In The Macroscopical Behavior Of Animal Whole Blood
    384(2)
    12.6 Specific Animal Species
    386(7)
    12.6.1 Species with high RBC aggregability
    386(2)
    12.6.2 Species with low RBC aggregability
    388(5)
    12.7 Adaptation To Environmental Stressors And Lifestyle
    393(1)
    12.8 A Bottom-Up Approach To Explore Animal Blood Suspensions
    394(2)
    12.9 Future Challenges
    396(4)
    Bibliography
    400(21)
    Index 421
    Annie Viallat, senior scientist at the French National Centre for Scientific Research, France, heads the "Physics and Engineering for Living Systems" Department in Marseille. She works on the physics of active matter, microcirculation of red blood cells and mucociliary clearance in health and disease.

    Manouk Abkarian is a senior scientist at the French National Centre for Scientific Research. He is a bio- and a soft matter physicist with an internationally recognized expertise on red blood cells dynamics and membrane mechanics, as well as in microfluidics and colloidal science.