Muutke küpsiste eelistusi

E-raamat: Dynamics of the Box-Ball System with Random Initial Conditions via Pitman's Transformation

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 112,71 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"The box-ball system (BBS), introduced by Takahashi and Satsuma in 1990, is a cellular automaton that exhibits solitonic behaviour. In this article, we study the BBS when started from a random two-sided infinite particle configuration. For such a model, Ferrari et al. recently showed the invariance in distribution of Bernoulli product measures with density strictly less than 1/2 , and gave a soliton decomposition for invariant measures more generally. We study the BBS dynamics using the transformation ofa nearest neighbour path encoding of the particle configuration given by 'reflection in the past maximum', which was famously shown by Pitman to connect Brownian motion and a three-dimensional Bessel process. We use this to characterise the set of configurations for which the dynamics are well-defined and reversible (i.e. can be inverted) for all times. The techniques developed to understand the deterministic dynamics are subsequently applied to study the evolution of the BBS from a random initial configuration. Specifically, we give simple sufficient conditions for random initial conditions to be invariant in distribution under the BBS dynamics, which we check in several natural examples, and also investigate the ergodicity of the relevant transformation. Furthermore, we analyse various probabilistic properties of the BBS that are commonly studied for interacting particle systems, such as the asymptotic behavior of the integrated current of particles and of a tagged particle. Finally, for Bernoulli product measures with parameter p [ up arrow] 1/2 (which may be considered the 'high density' regime), the path encoding we consider has a natural scaling limit, which motivates the introduction of a new continuous version of the BBS that we believe will be ofindependent interest as a dynamical system"--
David A. Croydon, Kyoto University, Japan.

Tsuyoshi Kato, Kyoto University, Japan.

Makiko Sasada, University of Tokyo, Japan.

Satoshi Tsujimoto, Kyoto University, Japan.