Muutke küpsiste eelistusi

E-raamat: Dynamics and Control of Autonomous Space Vehicles and Robotics

(Queen Mary University of London)
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 02-May-2019
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108626583
  • Formaat - EPUB+DRM
  • Hind: 143,26 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 02-May-2019
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781108626583

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Presenting the established principles underpinning space robotics (conservation of momentum and energy, stability) with a thorough and modern approach, chapters build from general physical foundations through an extensive treatment of kinematics of multi-body systems, and then to conservation principles in dynamics. The latter part of the book focuses on real-life applications related to space systems. Drawing upon years of practical experience and using numerous solved examples, illustrative applications and MATLAB, the author includes: an explanation of basic space mechanics and the dynamics of space vehicles; a rigorous treatment of conservation and variational principles in dynamics and in control theory that can be applied to a range of space vehicles and robotic systems; and a systematic presentation of the application of dynamics and control theory to real spacecraft systems.

Presents the established principles underpinning space robotics with a thorough and modern approach. This text is perfect for professionals in the field looking to gain an understanding of real-life applications of manipulators on satellites, and of the dynamics of satellites carrying robotic manipulators and of planetary rovers.

Arvustused

'It is quite impressive to explain such complex and highly integrated subjects in such an understandable way. The book provides us a unified method for the dynamic motion modelling of different kinds of Space vehicles with various motion characteristics.' Zheng Jie Wang, Beijing Institute of Technology 'This book is useful particularly as a single source of information for the broad spectrum of technologies related to space robotics and would be a good overview of the most established concepts and methodologies for graduate students and researchers entering the field. It would be a suitable text for a dedicated taught module in space robotics, or as a guide for graduate study in robotics, dynamics and control related to space engineering Overall, this book is a worthwhile read for capable space roboticists looking to build or extend their knowledge of the field.' Mark A. Post, The Aeronautical Journal

Muu info

Discusses the use of manipulators on satellites and the dynamics of satellites carrying robotic manipulators and of planetary rovers.
Preface xv
List of Acronyms xvii
1 Introduction to Autonomous Space Vehicles and Robotics 1(27)
1.1 Space Exploration: The Unmanned Spacecraft That Ventured into Space
1(6)
1.2 Exploring Mars
7(2)
1.3 Robotic Spacecraft for Planetary Landing and Exploration
9(1)
1.4 Exploring a Comet
10(1)
1.5 Grabbing an Asteroid
11(2)
1.6 Routing Space Debris
13(2)
1.7 Venturing into Deep Space: Spacecraft with Endurance
15(1)
1.8 Planetary Rovers and Robot Walkers, Hoppers, and Crawlers for Exploration
15(1)
1.9 Underwater Rovers and Aquanauts
16(1)
1.10 Humanoid Space Robots and Robonauts
16(2)
1.11 Robot Arms for Tele-Robotic Servicing
18(5)
1.12 Tumbling Cubes
23(1)
1.13 Collaborative Robotic Systems
23(1)
1.14 The Meaning of Autonomy
24(2)
1.15 Dynamics and Control of Space Vehicles
26(1)
1.16 The Future
26(1)
References
27(1)
2 Space Vehicle Orbit Dynamics 28(90)
2.1 Orbit Dynamics: An Introduction
28(1)
2.2 Planetary Motion: The Two-Body Problem
28(19)
2.2.1 Kepler's Laws
28(1)
2.2.2 Keplerian Motion of Two Bodies
29(5)
2.2.3 Orbital Elements
34(1)
2.2.4 Two-Body Problem in a Plane: Position and Velocity in an Elliptic Orbit
35(4)
2.2.5 Orbital Energy: The Visa-Viva Equation
39(2)
2.2.6 Position and Time in Elliptic Orbit
41(1)
2.2.7 Lambert's Theorem
42(1)
2.2.8 Orbit Inclination, Argument of the Ascending Node, Argument of the Perigee, and True Anomaly
43(3)
2.2.9 The f and g Functions
46(1)
2.3 Types of Orbits
47(1)
2.3.1 Geosynchronous Earth Orbits
47(1)
2.3.2 Geostationary Orbits
47(1)
2.3.3 Geosynchronous Transfer Orbit
47(1)
2.3.4 Polar Orbits
48(1)
2.3.5 Walking Orbits
48(1)
2.3.6 Sun Synchronous Orbits
48(1)
2.4 Impulsive Orbit Transfer
48(5)
2.4.1 Co-Planar Hohmann Transfer
49(2)
2.4.2 Non-Planar Hohmann Transfer
51(2)
2.5 Preliminary Orbit Determination
53(3)
2.5.1 Two Position Vectors of the Satellite
53(1)
2.5.2 Three Position Vectors of the Satellite
54(1)
2.5.3 Two Sets of Observations of the Range at Three Locations
55(1)
2.5.4 Range and Range Rates Measured at Three Locations
56(1)
2.6 Lambert's Problem
56(2)
2.7 Third Body and Other Orbit Perturbations
58(4)
2.7.1 Circular Restricted Three-Body Problem
59(3)
2.8 Lagrange Planetary Equations
62(3)
2.8.1 Geostationary Satellites
65(1)
2.9 Gauss' Planetary Equations: Force Perturbations
65(6)
2.9.1 Effect of Atmospheric Drag
67(1)
2.9.2 Space Shuttle in a Low Earth Orbit
68(1)
2.9.3 Lunar Orbits
69(2)
2.9.4 Third-Body Perturbation and Orbital Elements in Earth Orbit
71(1)
2.10 Spacecraft Relative Motion
71(14)
2.10.1 Hill-Clohessy-Wiltshire Equations
71(3)
2.10.2 Linear Orbit Theory with Perturbations
74(1)
2.10.3 Nonlinear Equations of Relative Motion with Perturbations
75(2)
2.10.4 Nonlinear Equations of Relative Motion with Reference to an Elliptic Orbit
77(4)
2.10.5 The Extended Nonlinear Tschauner-Hempel Equations
81(4)
2.11 Orbit Control
85(8)
2.11.1 Delaunay Elements
86(1)
2.11.2 Non-Singular Element Sets
86(1)
2.11.3 Equinoctial Elements
87(1)
2.11.4 Orbital Elements with the Orbit Plane Quaternion Replacing the Euler Angles in the 3-1-3 Sequence
88(3)
2.11.5 Gauss Planetary Equations in Terms of Orbit Quaternion Parameters
91(1)
2.11.6 Other Nonclassical Elements
92(1)
2.12 Orbit Maneuvers
93(7)
2.12.1 Feedback Control Laws for Low-Thrust Transfers Based on the GPE
94(4)
2.12.2 Feedback Control Laws with Constraints on the Control Accelerations
98(2)
2.13 Interception and Rendezvous
100(2)
2.14 Advanced Orbit Perturbations
102(5)
2.14.1 Gravitational Potential of a Perfect Oblate Spheroid Model of the Central Body
102(1)
2.14.2 Gravitational Potential due to a Central Body's Real Geometry
103(1)
2.14.3 Real Drag Acceleration Acting on the Actual Satellite
104(1)
2.14.4 Third-Body Perturbations
105(1)
2.14.5 Solar Radiation Pressure
106(1)
2.15 Launch Vehicle Dynamics: Point Mass Model
107(2)
2.15.1 Systems with Varying Mass
107(1)
2.15.2 Basic Rocket Thrust Equation
108(1)
2.16 Applications of the Rocket Equation
109(2)
2.16.1 Time to Burnout, Velocity, and Altitude in the Boost Phase
109(1)
2.16.2 Time and Altitude in the Coast Phase
110(1)
2.16.3 Delta-Vee Solution
110(1)
2.16.4 Mass-Ratio Decay
110(1)
2.16.5 Gravity Loss
111(1)
2.16.6 Specific Impulse
111(1)
2.17 Effects of Mass Expulsion
111(1)
2.17.1 Staging and Payloads
112(1)
2.18 Electric Propulsion
112(3)
2.18.1 Application to Mission Design
114(1)
References
115(3)
3 Space Vehicle Attitude Dynamics and Control 118(49)
3.1 Fundamentals of Satellite Attitude Dynamics
118(1)
3.2 Rigid Body Kinematics and Kinetics
118(3)
3.2.1 Coordinate Frame Definitions and Transformations
118(1)
3.2.2 Definition of Frames/Rotations
118(1)
3.2.3 The Inertial (i) Frame X-Y-Z
119(1)
3.2.4 The Local Rotating (r) or Orbiting Frame x-y-z
119(1)
3.2.5 The Body (b) Frame b1- b2-b3
119(1)
3.2.6 Defining the Body Frame
120(1)
3.2.7 Three- and Four-Parameter Attitude Representations
120(1)
3.3 Spacecraft Attitude Dynamics
121(2)
3.4 Environmental Disturbances
123(6)
3.4.1 Gravity Gradient Torques
123(2)
3.4.2 Aerodynamic Disturbance Torques
125(1)
3.4.3 Solar Wind and Radiation Pressure
126(1)
3.4.4 Thruster Misalignments
126(1)
3.4.5 Magnetic Disturbance Torques
126(3)
3.4.6 Control Torques
129(1)
3.5 Numerical Simulation
129(1)
3.6 Spacecraft Stability
129(4)
3.6.1 Linearized Attitude Dynamic Equation for Spacecraft in Low Earth Orbit
129(1)
3.6.2 Gravity-Gradient Stabilization
130(1)
3.6.3 Stability Analysis of the Spacecraft
131(2)
3.6.4 Influence of Dissipation of Energy on Stability
133(1)
3.7 Introduction and Overview of Spacecraft Attitude Control Concepts
133(3)
3.7.1 Objectives of Attitude Active Stabilization and Control
134(1)
3.7.2 Actuators and Thrusters for Spacecraft Attitude Control
134(1)
3.7.3 Active and Passive Stabilization Techniques
135(1)
3.7.4 Use of Thrusters on Spinning Satellites
136(1)
3.8 Momentum and Reaction Wheels
136(22)
3.8.1 Stabilization of Spacecraft
137(2)
3.8.2 Passive Control with a Gravity-Gradient Boom or a Yo-Yo Device
139(4)
3.8.3 Reaction Wheel Stabilization
143(2)
3.8.4 Momentum Wheel and Dual-Spin Stabilization
145(3)
3.8.5 Momentum Wheel Approximation with MW along Axis 1
148(1)
3.8.6 Control Moment Gyroscopes
149(1)
3.8.7 Example of Control System Based on Reaction Wheels
149(3)
3.8.8 Quaternion Representation of Attitude
152(2)
3.8.9 The Relations between the Quaternion Rates and Angular Velocities
154(3)
3.8.10 The Gravity Gradient Stability Equations in Terms of the Quaternion
157(1)
3.9 Definition of the General Control Problem with CMG Actuation
158(6)
3.9.1 Nonlinear Attitude Control Laws
162(1)
3.9.2 Minimum Time Maneuvers
163(1)
3.9.3 Passive Damping Systems
163(1)
3.9.4 Spin Rate Damping
164(1)
3.10 Magnetic Actuators
164(1)
3.10.1 Active Control with Magnetic Actuators
165(1)
References
165(2)
4 Manipulators on Space Platforms: Dynamics and Control 167(39)
4.1 Review of Robot Kinematics
167(3)
4.1.1 The Total Moment of Momentum and Translational Momentum
167(2)
4.1.2 The Screw Vector and the Generalized Jacobian Matrix of the Manipulator
169(1)
4.2 Fundamentals of Robot Dynamics: The Lagrangian Approach
170(8)
4.3 Other Approaches to Robot Dynamics Formulation
178(1)
4.4 Fundamentals of Manipulator Deployment and Control
179(4)
4.5 Free-Flying Multi-Link Serial Manipulator in Three Dimensions
183(2)
4.6 Application of the Principles of Momentum Conservation to Satellite-Manipulator Dynamics
185(1)
4.7 Application of the Lagrangian Approach to Satellite-Manipulator Dynamics
185(2)
4.8 Gravity-Gradient Forces and Moments on an Orbiting Body
187(2)
4.8.1 Gravity-Gradient Moment Acting on the Satellite Body and Manipulator Combined
188(1)
4.9 Application to Satellite-Manipulator Dynamics
189(2)
4.10 Dynamic Stability of Satellite-Manipulator Dynamics with Gravity-Gradient Forces and Moment
191(5)
4.11 Three-Axis Control of a Satellite's Attitude with an Onboard Robot Manipulator
196(7)
4.11.1 Rotation Rate Synchronization Control
196(7)
References
203(3)
5 Kinematics, Dynamics, and Control of Mobile Robot Manipulators 206(23)
5.1 Kinematics of Wheeled Mobile Manipulators: Non-Holonomic Constraints
206(3)
5.2 Dynamics of Manipulators on a Moving Base
209(1)
5.3 Dynamics of Wheeled Mobile Manipulators
209(6)
5.3.1 Manipulability
211(1)
5.3.2 Tip Over and Dynamic Stability Issues
212(3)
5.4 Dynamic Control for Path Tracking by Wheeled Mobile Manipulators
215(7)
5.5 Decoupled Control of the Mobile Platform and Manipulator
222(1)
5.6 Motion Planning for Mobile Manipulators
223(1)
5.7 Non-Holonomic Space Manipulators
224(3)
References
227(2)
6 Planetary Rovers and Mobile Robotics 229(28)
6.1 Planetary Rovers: Architecture
229(4)
6.1.1 Vehicle Dynamics and Control
230(1)
6.1.2 Mission Planning
231(1)
6.1.3 Propulsion and Locomotion
232(1)
6.1.4 Planetary Navigation
233(1)
6.2 Dynamic Modeling of Planetary Rovers
233(15)
6.2.1 Non-Holonomic Constraints
233(2)
6.2.2 Vehicle Generalized Forces
235(1)
6.2.3 Modeling the Suspension System and Limbs
235(5)
6.2.4 Platform Kinetic and Potential Energies
240(2)
6.2.5 Assembling the Vehicle's Kinetic and Potential Energies
242(1)
6.2.6 Deriving the Dynamic Equations of Motion
243(1)
6.2.7 Considerations of Slip and Traction
243(5)
6.3 Control of Planetary Rovers
248(6)
6.3.1 Path Following Control: Kinematic Modeling
248(3)
6.3.2 Estimating Slip
251(1)
6.3.3 Slip-Compensated Path Following Control Law Synthesis
251(3)
6.3.4 The Focused D Algorithm
254(1)
References
254(3)
7 Navigation and Localization 257(51)
7.1 Introduction to Navigation
257(1)
7.1.1 Basic Navigation Activities
257(1)
7.2 Localization, Mapping, and Navigation
258(6)
7.2.1 Introduction to Localization
259(5)
7.3 Random Processes
264(13)
7.3.1 Basics of Probability
269(3)
7.3.2 The Kalman Filter
272(3)
7.3.3 Probabilistic Methods and Essentials of Bayesian Inference
275(2)
7.4 Probabilistic Representation of Uncertain Motion Using Particles
277(9)
7.4.1 Monte Carlo Integration, Normalization, and Resampling
277(1)
7.4.2 The Particle Filter
278(4)
7.4.3 Application to Rover Localization
282(2)
7.4.4 Monte Carlo Localization
284(1)
7.4.5 Probabilistic Localization within a Map, Using Odometry and Range Measurements
285(1)
7.5 Place Recognition and Occupancy Mapping: Advanced Sensing Techniques and Ranging
286(1)
7.5.1 Place Recognition Using Ranging Signatures: Occupancy Mapping of Free Space and Obstacles
287(1)
7.6 The Extended Kalman Filter
287(5)
7.6.1 The Unscented Kalman Filter (UKF)
290(2)
7.7 Nonlinear Least Squares, Maximum Likelihood (Ml), Maximum A Posteriori (MAP) Estimation
292(6)
7.7.1 Nonlinear Least Squares Problems Solution Using Gauss-Newton and Levenberg Marquardt Optimization Algorithms
296(2)
7.8 Simultaneous Localization and Mapping (SLAM)
298(7)
7.8.1 Introduction to the Essential Principles and Method of SLAM
298(5)
7.8.2 Multi-Sensor Fusion and SLAM
303(1)
7.8.3 Large-Scale Map Building via Sub-Maps
304(1)
7.8.4 Vision-Based SLAM
305(1)
7.9 Localization in Space and Mobile Robotics
305(1)
References
306(2)
8 Sensing and Estimation of Spacecraft Dynamics 308(41)
8.1 Introduction
308(1)
8.2 Spacecraft Attitude Sensors
308(7)
8.2.1 The Principle of Operation of Accelerometers and Gyroscopes
308(3)
8.2.2 Magnetic Field Sensor
311(1)
8.2.3 Sun Sensors
312(1)
8.2.4 Earth Horizon Sensors
312(1)
8.2.5 Star Sensors
313(1)
8.2.6 Use of Navigation Satellite as a Sensor for Attitude Determination
313(2)
8.3 Attitude Determination
315(4)
8.4 Spacecraft Large Attitude Estimation
319(9)
8.4.1 Attitude Kinematics Process Modeling
320(2)
8.4.2 Codeless Satellite Navigation Attitude Sensor Model
322(2)
8.4.3 Application of Nonlinear Kalman Filtering to Attitude Estimation
324(4)
8.5 Nonlinear State Estimation for Spacecraft Rotation Rate Synchronization with an Orbiting Body
328(11)
8.5.1 Chaser Spacecraft's Attitude Dynamics
330(2)
8.5.2 Relative Attitude Dynamics
332(2)
8.5.3 Nonlinear State Estimation
334(2)
8.5.4 The Measurements
336(2)
8.5.5 The Controller Synthesis
338(1)
8.6 Sensors for Localization
339(2)
8.7 Sensors for Navigation
341(3)
8.7.1 Imaging Sensors and Cameras
342(2)
References
344(5)
Index 349
Ranjan Vepa is currently a Senior Lecturer at Queen Mary University of London. He is the author of five books on biomimetic robotics, dynamics of smart structures, dynamic modelling, simulation and control of energy generation, flight dynamics simulation and control of aircraft and on nonlinear control of robots and UAVs. His research interests include applications in space robotics, electric aircraft and autonomous vehicles. He teaches advanced courses on robotics, aeroelasticity, advanced flight control and simulation and on spacecraft design, manoeuvring and orbital mechanics.