Muutke küpsiste eelistusi

E-raamat: Dynamics and Control of Robotic Systems

, (University of Florida)
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 29-Oct-2019
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119524953
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 143,20 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 29-Oct-2019
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119524953
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A comprehensive review of the principles and dynamics of robotic systems

Dynamics and Control of Robotic Systems offers a systematic and thorough theoretical background for the study of the dynamics and control of robotic systems. The authors—noted experts in the field—highlight the underlying principles of dynamics and control that can be employed in a variety of contemporary applications. The book contains a detailed presentation of the precepts of robotics and provides methodologies that are relevant to realistic robotic systems. The robotic systems represented include wide range examples from classical industrial manipulators, humanoid robots to robotic surgical assistants, space vehicles, and computer controlled milling machines.

The book puts the emphasis on the systematic application of the underlying principles and show how the computational and analytical tools such as MATLAB, Mathematica, and Maple enable students to focus on robotics’ principles and theory. Dynamics and Control of Robotic Systems contains an extensive collection of examples and problems and:

  • Puts the focus on the fundamentals of kinematics and dynamics as applied to robotic systems
  • Presents the techniques of analytical mechanics of robotics
  • Includes a review of advanced topics such as the recursive order N formulation
  • Contains a wide array of design and analysis problems for robotic systems

Written for students of robotics, Dynamics and Control of Robotic Systems offers a comprehensive review of the underlying principles and methods of the science of robotics.

Preface xiii
Acknowledgment xv
About the Companion Website xvii
1 Introduction
1(34)
1.1 Motivation
1(4)
1.2 Origins of Robotic Systems
5(2)
1.3 General Structure of Robotic Systems
7(2)
1.4 Robotic Manipulators
9(11)
1.4.1 Typical Structure of Robotic Manipulators
9(2)
1.4.2 Classification of Robotic Manipulators
11(1)
1.4.2.1 Classification by Motion Characteristics
11(1)
1.4.2.2 Classification by Degrees of Freedom
12(1)
1.4.2.3 Classification by Driver Technology and Drive Power
12(1)
1.4.2.4 Classification by Kinematic Structure
12(2)
1.4.2.5 Classification by Workspace Geometry
14(1)
1.4.3 Examples of Robotic Manipulators
14(1)
1.4.3.1 Cartesian Robotic Manipulator
15(1)
1.4.3.2 Cylindrical Robotic Manipulator
16(1)
1.4.3.3 SCARA Robotic Manipulator
16(1)
1.4.3.4 Spherical Robotic Manipulator
17(1)
1.4.3.5 PUMA Robotic Manipulator
18(1)
1.4.4 Spherical Wrist
18(2)
1.4.5 Articulated Robot
20(1)
1.5 Mobile Robotics
20(6)
1.5.1 Humanoid Robots
20(2)
1.5.2 Autonomous Ground Vehicles
22(1)
1.5.3 Autonomous Air Vehicles
23(2)
1.5.4 Autonomous Marine Vehicles
25(1)
1.6 An Overview of Robotics Dynamics and Control Problems
26(5)
1.6.1 Forward Kinematics
27(1)
1.6.2 Inverse Kinematics
28(1)
1.6.3 Forward Dynamics
28(1)
1.6.4 Inverse Dynamics and Feedback Control
29(1)
1.6.5 Dynamics and Control of Robotic Vehicles
30(1)
1.7 Organization of the Book
31(2)
1.8 Problems for
Chapter 1
33(2)
2 Fundamentals of Kinematics
35(74)
2.1 Bases and Coordinate Systems
35(14)
2.1.1 N-Tuples and M × N Arrays
35(4)
2.1.2 Vectors, Bases and Frames
39(1)
2.1.2.1 Vectors
40(1)
2.1.2.2 Bases and Frames
41(8)
2.2 Rotation Matrices
49(3)
2.3 Parameterizations of Rotation Matrices
52(16)
2.3.1 Single Axis Rotations
52(4)
2.3.2 Cascades of Rotation Matrices
56(1)
2.3.2.1 Cascade Rotations about Moving Axes
56(1)
2.3.2.2 Cascade Rotations about Fixed Axes
57(1)
2.3.3 Euler Angles
57(1)
2.3.3.1 The 3-2-1 Yaw-Pitch-Roll Euler Angles
58(4)
2.3.3.2 The 3-1-3 Precession-Nutation-Spin Euler Angles
62(3)
2.3.4 Axis Angle Parameterization
65(3)
2.4 Position, Velocity, and Acceleration
68(9)
2.5 Angular Velocity and Angular Acceleration
77(7)
2.5.1 Angular Velocity
77(6)
2.5.2 Angular Acceleration
83(1)
2.6 Theorems of Kinematics
84(12)
2.6.1 Addition of Angular Velocities
84(3)
2.6.2 Relative Velocity
87(1)
2.6.3 Relative Acceleration
88(3)
2.6.4 Common Coordinate Systems
91(1)
2.6.4.1 Cartesian Coordinates
91(1)
2.6.4.2 Cylindrical Coordinates
92(2)
2.6.4.3 Spherical Coordinates
94(2)
2.7 Problems for
Chapter 2, Kinematics
96(13)
2.7.1 Problems on AT-tuples and M X N Arrays
96(1)
2.7.2 Problems on Vectors, Bases, and Frames
97(1)
2.7.3 Problems on Rotation Matrices
98(4)
2.7.4 Problems on Position, Velocity, and Acceleration
102(2)
2.7.5 Problems on Angular Velocity
104(1)
2.7.6 Problems on the Theorems of Kinematics
104(1)
2.7.6.1 Problems on the Addition of Angular Velocities
104(1)
2.7.7 Problems on Relative Velocity and Acceleration
105(3)
2.7.8 Problems on Common Coordinate Systems
108(1)
3 Kinematics of Robotic Systems
109(88)
3.1 Homogeneous Transformations and Rigid Motion
109(6)
3.2 Ideal Joints
115(6)
3.2.1 The Prismatic Joint
116(1)
3.2.2 The Revolute Joint
117(2)
3.2.3 Other Ideal Joints
119(2)
3.3 The Denavit-Hartenberg Convention
121(17)
3.3.1 Kinematic Chains and Numbering in the DH Convention
121(2)
3.3.2 Definition of Frames in the DH Convention
123(1)
3.3.3 Homogeneous Transforms in the DH Convention
124(3)
3.3.4 The DH Procedure
127(6)
3.3.5 Angular Velocity and Velocity in the DH Convention
133(5)
3.4 Recursive O(N) Formulation of Forward Kinematics
138(22)
3.4.1 Recursive Calculation of Velocity and Angular Velocity
140(3)
3.4.2 Efficiency and Computational Cost
143(4)
3.4.3 Recursive Calculation of Acceleration and Angular Acceleration
147(13)
3.5 Inverse Kinematics
160(26)
3.5.1 Solvability
160(3)
3.5.2 Analytical Methods
163(1)
3.5.2.1 Algebraic Methods
163(11)
3.5.2.2 Geometric Methods
174(2)
3.5.3 Optimization Methods
176(8)
3.5.4 Inverse Velocity Kinematics
184(1)
3.5.4.1 Singularity
185(1)
3.6 Problems for
Chapter 3, Kinematics of Robotic Systems
186(11)
3.6.1 Problems on Homogeneous Transformations
186(2)
3.6.2 Problems on Ideal Joints and Constraints
188(1)
3.6.3 Problems on the DH Convention
188(2)
3.6.4 Problems on Angular Velocity and Velocity for Kinematic Chains
190(5)
3.6.5 Problems on Inverse Kinematics
195(2)
4 Newton-Euler Formulations
197(88)
4.1 Linear Momentum of Rigid Bodies
197(6)
4.2 Angular Momentum of Rigid Bodies
203(26)
4.2.1 First Principles
203(5)
4.2.2 Angular Momentum and Inertia
208(6)
4.2.3 Calculation of the Inertia Matrix
214(1)
4.2.3.1 The Inertia Rotation Transformation Law
214(4)
4.2.3.2 Principal Axes of Inertia
218(3)
4.2.3.3 The Parallel Axis Theorem
221(3)
4.2.3.4 Symmetry and Inertia
224(5)
4.3 The Newton-Euler Equations
229(4)
4.4 Euler's Equation for a Rigid Body
233(2)
4.5 Equations of Motion for Mechanical Systems
235(23)
4.5.1 The General Strategy
235(1)
4.5.2 Free Body Diagrams
236(22)
4.6 Structure of Governing Equations: Newton-Euler Formulations
258(4)
4.6.1 Differential Algebraic Equations (DAEs)
258(2)
4.6.2 Ordinary Differential Equations (ODEs)
260(2)
4.7 Recursive Newton-Euler Formulations
262(9)
4.8 Recursive Derivation of the Equations of Motion
271(3)
4.9 Problems for
Chapter 4, Newton-Euler Equations
274(11)
4.9.1 Problems on Linear Momentum
274(3)
4.9.2 Problems on the Center of Mass
277(2)
4.9.3 Problems on the Inertia Matrix
279(2)
4.9.4 Problems on Angular Momentum
281(1)
4.9.5 Problems on the Newton-Euler Equations
282(3)
5 Analytical Mechanics
285(62)
5.1 Hamilton's Principle
285(18)
5.1.1 Generalized Coordinates
285(3)
5.1.2 Functionals and the Calculus of Variations
288(4)
5.1.3 Hamilton's Principle for Conservative Systems
292(7)
5.1.4 Kinetic Energy for Rigid Bodies
299(4)
5.2 Lagrange's Equations for Conservative Systems
303(4)
5.3 Hamilton's Extended Principle
307(15)
5.3.1 Virtual Work Formulations
307(15)
5.4 Lagrange's Equations for Robotic Systems
322(7)
5.4.1 Natural Systems
322(4)
5.4.2 Lagrange's Equations and the Denavit-Hartenberg Convention
326(3)
5.5 Constrained Systems
329(5)
5.6 Problems for
Chapter 5, Analytical Mechanics
334(13)
5.6.1 Problems on Hamilton's Principle
334(3)
5.6.2 Problems on Lagrange's Equations
337(2)
5.6.3 Problems on Hamilton's Extended Principle
339(6)
5.6.4 Problems on Constrained Systems
345(2)
6 Control of Robotic Systems
347(68)
6.1 The Structure of Control Problems
347(3)
6.1.1 Setpoint and Tracking Feedback Control Problems
348(1)
6.1.2 Open Loop and Closed Loop Control
349(1)
6.1.3 Linear and Nonlinear Control
349(1)
6.2 Fundamentals of Stability Theory
350(7)
6.3 Advanced Techniques of Stability Theory
357(1)
6.4 Lyapunov's Direct Method
358(3)
6.5 The Invariance Principle
361(5)
6.6 Dynamic Inversion or Computed Torque Control
366(10)
6.7 Approximate Dynamic Inversion and Uncertainty
376(13)
6.8 Controllers Based on Passivity
389(4)
6.9 Actuator Models
393(11)
6.9.1 Electric Motors
393(7)
6.9.2 Linear Actuators
400(4)
6.10 Backstepping Control and Actuator Dynamics
404(3)
6.11 Problems for
Chapter 6, control of Robotic Systems
407(8)
6.11.1 Problems on Gravity Compensation and PD Setpoint Control
407(5)
6.11.2 Problems on Computed Torque Tracking Control
412(1)
6.11.3 Problems on Dissipativity Based Tracking Control
413(2)
7 Image Based Control of Robotic Systems
415(50)
7.1 The Geometry of Camera Measurements
415(8)
7.1.1 Perspective Projection and Pinhole Camera Models
415(3)
7.1.2 Pixel Coordinates and CCD Cameras
418(1)
7.1.3 The Interaction Matrix
419(4)
7.2 Image Based Visual Servo Control
423(18)
7.2.1 Control Synthesis and Closed Loop Equations
424(3)
7.2.2 Calculation of Initial Conditions
427(14)
7.3 Task Space Control
441(6)
7.4 Task Space and Visual Control
447(12)
7.5 Problems for
Chapter 7
459(6)
A Appendix
465(20)
A.1 Fundamentals of Linear Algebra
465(10)
A.1.1 Solution of Matrix Equations
467(1)
A.1.2 Linear Independence and Rank
468(2)
A.1.3 Invertibility and Rank
470(1)
A.1.4 Least Squares Approximation
470(5)
A.1.5 Rank Conditions and the Interaction Matrix
475(1)
A.2 The Algebraic Eigenvalue Problem
475(4)
A.2.1 Self-adjoint Matrices
476(2)
A.2.2 Jordan Canonical Form
478(1)
A.3 Gauss Transformations and LU Factorizations
479(6)
References 485(4)
Index 489
ANDREW J. KURDILA, PHD, is the W. Martin Johnson Professor of Mechanical Engineering at Virginia Tech. He is the author of Structural Dynamics: An Introduction to Computer Methods from Wiley.

PINHAS BEN-TZVI, PHD, is Associate Professor of Mechanical Engineering at Virginia Tech. He has expertise in robotics and autonomous systems, bio-inspired robotics, mechatronics, control systems, robotic vision, human-robot interaction, machine learning, and more.