Muutke küpsiste eelistusi

E-raamat: Dynamics of Multiphase Flows

(Ohio State University), , (New Jersey Institute of Technology)
  • Formaat - PDF+DRM
  • Hind: 117,31 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Understand multiphase flows using multidisciplinary knowledge in physical principles, modelling theories, and engineering practices. This essential text methodically introduces the important concepts, governing mechanisms, and state-of-the-art theories, using numerous real-world applications, examples, and problems. Covers all major types of multiphase flows, including gas-solid, gas-liquid (sprays or bubbling), liquid-solid, and gas-solid-liquid flows. Introduces the volume-time-averaged transport theorems and associated Lagrangian-trajectory modelling and Eulerian-Eulerian multi-fluid modelling. Explains typical computational techniques, measurement methods and four representative subjects of multiphase flow systems. Suitable as a reference for engineering students, researchers, and practitioners, this text explores and applies fundamental theories to the analysis of system performance using a case-based approach.

Arvustused

' extremely well-written, balanced, and classroom-tested advanced textbook Momentum, heat, and mass transfer are discussed in a consistent style throughout the text good number of homework problems, and references Highly recommended.' J. Lambropoulos, Choice Connect

Muu info

Address physical principles and unified theories governing multiphase flows, with methods, applications, and problems.
Preface xix
Part I Principles 1(374)
1 Introduction to Multiphase Flows
3(28)
1.1 Multiphase Flow Phenomena
3(12)
1.1.1 Sedimentation in a Particulate Flow
3(3)
1.1.2 Dispersion by Sprays or Multiphase Jets
6(2)
1.1.3 Mixing and Material Processing
8(3)
1.1.4 Pipeline Transport
11(2)
1.1.5 Flows with Charged Particles
13(1)
1.1.6 Flows with Chemical Reactions
14(1)
1.2 Definition of Multiphase Flow
15(2)
1.2.1 Multiphase Flows versus Multicomponent Flows
15(1)
1.2.2 Dilute Phase versus Dense Phase
16(1)
1.3 Modeling Approaches
17(1)
1.3.1 Eulerian-Lagrangian Modeling
17(1)
1.3.2 Eulerian-Eulerian Modeling
18(1)
1.4 Case Studies: Peculiarities of Multiphase Flows
18(8)
1.4.1 Bubble Acceleration
19(1)
1.4.2 Pressure Drop Reduction in Pneumatic Transport
20(1)
1.4.3 Acceleration of Solids in a Dense Gas-Solid Riser
21(1)
1.4.4 Cluster Formation and Instability
22(2)
1.4.5 Wake-Induced Phenomena
24(1)
1.4.6 Particle Trajectories in a Cyclone Separator
25(1)
1.5 Summary
26(1)
Nomenclature
27(1)
Problems
27(2)
References
29(2)
2 Continuum Modeling of Single-Phase Flows
31(50)
2.1 Introduction
31(1)
2.2 Flow of a Viscous Fluid
32(11)
2.2.1 Constitutive Relation of a Viscous Fluid
33(1)
2.2.2 General Transport Theorem
34(1)
2.2.3 Governing Equations of Viscous Flows
35(2)
2.2.4 Interfacial Phenomena and Boundary Conditions
37(4)
2.2.5 Theory Simplifications and Limitations
41(2)
2.3 Turbulence
43(12)
2.3.1 Turbulent Flows
43(2)
2.3.2 Length Scales in Turbulence
45(1)
2.3.3 Reynolds-Averaged Navier-Stokes Equations
46(2)
2.3.4 Turbulence Modeling
48(5)
2.3.5 Large Eddy Simulation
53(2)
2.4 Flows in Porous Media
55(5)
2.4.1 Darcy's Law
55(1)
2.4.2 Ergun's Equation
56(2)
2.4.3 Brinkman Equation
58(2)
2.5 Kinetic Theory of Collision-Dominated Granular Flows
60(8)
2.5.1 Regimes of Granular Flows
61(1)
2.5.2 Transport Theorem of Collision-Dominated Granular Particles
62(2)
2.5.3 Governing Equations
64(2)
2.5.4 Constitutive Relations
66(1)
2.5.5 Advancement in Kinetic Theory for Granular Flow
67(1)
2.6 Case Studies
68(4)
2.6.1 Model Closure of a Multicomponent Single-Phase Reacting Flow
68(1)
2.6.2 Smallest Characteristic Length of a Continuum-Based CFD
69(1)
2.6.3 Flow into a Spherical Cavity in an Infinite Porous Medium
69(2)
2.6.4 Electroosmotic Flow
71(1)
2.7 Summary
72(1)
Nomenclature
73(3)
Problems
76(2)
References
78(3)
3 Transport of Isolated Objects: Solid Particles, Droplets, and Bubbles
81(45)
3.1 Introduction
81(1)
3.2 Momentum Transfer
82(14)
3.2.1 Drag Force
84(6)
3.2.2 Basset Force and Carried Mass
90(1)
3.2.3 Saffman Force and Other Gradient-Related Forces
91(2)
3.2.4 Magnus Force
93(1)
3.2.5 Field Forces
93(3)
3.2.6 Coriolis Force
96(1)
3.3 Heat Transfer
96(4)
3.3.1 Heat Conduction of a Sphere in Quiescent Fluid
97(2)
3.3.2 Convective and Radiant Heat Transfer of a Sphere
99(1)
3.4 Mass Transfer
100(5)
3.4.1 Mass Fluxes in a Multicomponent Fluid
100(1)
3.4.2 Stefan Flux
101(1)
3.4.3 Evaporation of a Droplet
102(3)
3.5 Equation of Motion
105(2)
3.5.1 Basset-Boussinesq-Oseen Equation
105(1)
3.5.2 General Equation of Motion
106(1)
3.6 Advanced Topics
107(3)
3.6.1 Characteristics and Shape Regime of Fluid Particles
107(2)
3.6.2 Orientation and Path Instability of Nonspherical Particles
109(1)
3.7 Case Studies
110(7)
3.7.1 Particle Trajectory in a Rotating Fluid
110(3)
3.7.2 Motion of a Charged Particle between Parallel Electric Plates
113(1)
3.7.3 Motion of a Parachuted Object from an Airplane
114(2)
3.7.4 Motion of an Evaporating Droplet
116(1)
3.8 Summary
117(1)
Nomenclature
118(2)
Problems
120(3)
References
123(3)
4 Interactions of Particles, Droplets, and Bubbles
126(46)
4.1 Introduction
126(1)
4.2 Transport Properties of a Cloud of Particles
127(9)
4.2.1 Hydrodynamic Forces of a Pair of Spheres
127(2)
4.2.2 Hydrodynamic Forces on a Sphere in a Swamp of Spheres
129(2)
4.2.3 Heat Transfer of Suspended Particles
131(3)
4.2.4 Mass Transfer of a Cluster
134(1)
4.2.5 Charge Effect due to Interparticle and Particle-Wall Interactions
135(1)
4.3 Collision of a Pair of Solid Spheres
136(12)
4.3.1 Hertzian Contact of Frictionless Spheres
137(1)
4.3.2 Frictional Contact of Spheres
138(2)
4.3.3 Normal Collision of Elastic Spheres
140(2)
4.3.4 Oblique and Rotational Collisions
142(2)
4.3.5 Collision of Inelastic Spheres
144(2)
4.3.6 Heat Transfer by Collision of Solids
146(1)
4.3.7 Charge Transfer by Collision of Solids
147(1)
4.4 Other Interaction Forces between Solid Particles
148(1)
4.4.1 Van der Waals Force
148(1)
4.4.2 Liquid-Bridge Force
149(1)
4.5 Interactions between Fluid Particles
149(8)
4.5.1 Droplet Impact on a Flat Solid Surface
150(2)
4.5.2 Binary Droplet Collision
152(1)
4.5.3 Breakup of Fluid Particles
153(2)
4.5.4 Coalescence of Fluid Particles
155(2)
4.6 Case Studies
157(8)
4.6.1 Settling of Suspended Particles in Column
157(2)
4.6.2 Wake-Induced Motion of a Pair of Spheres
159(2)
4.6.3 Collision of Elastic Spheres in Fluid
161(1)
4.6.4 Leidenfrost Collision of a Drop with a Flat Surface
162(3)
4.7 Summary
165(1)
Nomenclature
165(2)
Problems
167(3)
References
170(2)
5 Continuum-Discrete Tracking Modeling of Multiphase Flows
172(40)
5.1 Introduction
172(3)
5.2 Lagrangian Trajectory Modeling
175(7)
5.2.1 Deterministic Trajectory Models
176(1)
5.2.2 Stochastic Trajectory Models
177(2)
5.2.3 Particle Cloud Tracking Models
179(3)
5.3 Discrete Element Method
182(9)
5.3.1 Hard-Sphere Model
182(3)
5.3.2 Soft-Sphere Model
185(6)
5.4 Coupling in Eulerian-Lagrangian Model
191(5)
5.4.1 Mass Coupling
192(1)
5.4.2 Momentum Coupling
193(1)
5.4.3 Energy Coupling
194(1)
5.4.4 Coupling due to Charge-Induced Electric Field
195(1)
5.5 Case Studies
196(8)
5.5.1 Flow over Airfoil in Rain
196(2)
5.5.2 Inhalation of Ultrafine Particulates
198(2)
5.5.3 Solar-Absorbing Particulate-Laden Flow
200(2)
5.5.4 Transport of Charged Particles in Chamber
202(2)
5.6 Summary
204(1)
Nomenclature
204(3)
Problems
207(4)
References
211(1)
6 Continuum Modeling of Multiphase Flows
212(49)
6.1 Introduction
212(1)
6.2 Averages and Averaging Theorems
212(4)
6.2.1 Phase and Intrinsic Averaging
213(1)
6.2.2 Volume-Averaging Theorems
214(2)
6.3 Volume-Averaged Equations
216(5)
6.3.1 General Volume-Averaged Equations
217(1)
6.3.2 Volume-Averaged Continuity Equation
217(1)
6.3.3 Volume-Averaged Momentum Equation
218(1)
6.3.4 Volume-Averaged Energy Equation
219(2)
6.4 Volume-Time-Averaged Equations
221(8)
6.4.1 Volume-Time Averages and Covariance
222(1)
6.4.2 Volume-Time-Averaged Continuity Equation
223(1)
6.4.3 Volume-Time-Averaged Momentum Equation
224(1)
6.4.4 Volume-Time-Averaged Energy Equation
224(2)
6.4.5 Closure of Volume-Time-Averaged Equations
226(3)
6.5 Constitutive Relations in Multifluid Model
229(5)
6.5.1 Pressure
229(1)
6.5.2 Molecular Fluxes
230(1)
6.5.3 Eddy Diffusivities
230(1)
6.5.4 Interfacial Transport
231(2)
6.5.5 Turbulence Modeling
233(1)
6.6 Constitutive Relations for Fluid-Solid Flows
234(4)
6.6.1 Stresses of Solid Particles
234(1)
6.6.2 Turbulent Diffusion of Particulates
235(3)
6.7 Advanced Topics
238(8)
6.7.1 Effect of Mesoscale Structures on Phase Interaction
238(1)
6.7.2 Particle Size Distribution and Interfacial Area Concentration
239(3)
6.7.3 Turbulence Modulation
242(4)
6.8 Case Studies
246(8)
6.8.1 Particle Suspension in a Stirred Tank
246(2)
6.8.2 Bubble Plume Flow in Bubble Column
248(2)
6.8.3 Heat Transfer of Immersed Tubes in Dense Gas-Solid Fluidized Bed
250(1)
6.8.4 Evaporating Spray in Gas-Solid Suspension Flow
251(3)
6.9 Summary
254(1)
Nomenclature
255(2)
Problems
257(1)
References
258(3)
7 Numerical Modeling and Simulation
261(55)
7.1 Introduction
261(1)
7.2 General Procedure of Numerical Modeling and Simulation
262(2)
7.3 Numerical Solutions of Partial Differential Equations
264(8)
7.3.1 Numerical Solution of General Transport Equation
265(3)
7.3.2 Numerical Methods for Single-Phase Flow
268(4)
7.3.3 Boundary Conditions
272(1)
7.4 Resolved Interface Approach for Dispersed Phase Objects
272(13)
7.4.1 Conformal Mesh Methods
273(3)
7.4.2 Nonconformal Mesh Methods
276(9)
7.5 Eulerian-Lagrangian Algorithms for Multiphase Flows
285(4)
7.5.1 Governing Equations
286(1)
7.5.2 Continuous-Discrete Phase Coupling
287(1)
7.5.3 Particle-Particle Interactions
288(1)
7.6 Eulerian-Eulerian Algorithms for Multiphase Flows
289(5)
7.6.1 Calculation of Velocity and Pressure Field
290(3)
7.6.2 Volume Fraction
293(1)
7.6.3 Pressure and Volume Fraction for Dense Solid Phase
293(1)
7.7 Lattice Boltzmann Method
294(8)
7.7.1 LBM for Single-Phase Flows
294(3)
7.7.2 LBM for Particle Suspensions
297(2)
7.7.3 LBM with Two Fluid Phases
299(3)
7.8 Case Studies
302(6)
7.8.1 Particle-Fluid Force in LBM
302(1)
7.8.2 Modeling of Aerosol Delivery by a Powder Inhaler
303(2)
7.8.3 Air Entrainment in a Hydraulic Jump
305(1)
7.8.4 Evaluation of Sparger in Bubble Column
306(2)
7.9 Summary
308(1)
Nomenclature
308(2)
Problems
310(2)
References
312(4)
8 Measurement Techniques
316(59)
8.1 Introduction
316(2)
8.2 Particle Size and Morphology Measurement
318(13)
8.2.1 Optical Visualization Methods
319(1)
8.2.2 Microscopy Methods
319(1)
8.2.3 Sieving Analysis
320(1)
8.2.4 Sedimentation Methods
321(3)
8.2.5 Cascade Impaction
324(1)
8.2.6 Phase Doppler Method
325(3)
8.2.7 Particle Size Distribution and Averaged Size
328(3)
8.3 Volume Fraction Measurement
331(11)
8.3.1 Beam Attenuation Method
331(3)
8.3.2 Permittivity Measurement Method
334(2)
8.3.3 Transmission Tomography
336(3)
8.3.4 Electrical Impedance Tomography
339(3)
8.4 Mass Flow Measurement
342(6)
8.4.1 Overall Mass Flow Measurement
342(2)
8.4.2 Isokinetic Sampling Method
344(2)
8.4.3 Ball Probe Method
346(2)
8.5 Velocity Measurement
348(10)
8.5.1 Cross-correlation Method
348(2)
8.5.2 Venturimeter
350(2)
8.5.3 Laser Doppler Velocimetry
352(3)
8.5.4 Corona Discharge Method
355(1)
8.5.5 Particle Image Velocimetry
356(2)
8.6 Charge Measurement
358(2)
8.6.1 Sampling with Faraday Cup
359(1)
8.6.2 Induction Probe
359(1)
8.7 Case Studies
360(5)
8.7.1 Particle Size Distribution by Deconvolution Method
360(2)
8.7.2 Optical Measurement of Microbubbles and Droplets
362(1)
8.7.3 Volume Fraction in a Pressurized Slurry-Bubble Column
363(2)
8.8 Summary
365(1)
Nomenclature
366(2)
Problems
368(4)
References
372(3)
Part II Application-Based Analysis of Multiphase Flows 375(209)
9 Separation of Multiphase Flows
377(46)
9.1 Introduction
377(1)
9.2 Separation by Phase Inertia
377(13)
9.2.1 Phase-Inertia Separation Methods
378(5)
9.2.2 Modeling Approaches
383(7)
9.3 Filtration
390(7)
9.3.1 Collection Efficiency of a Single Fiber or Granular Particle
390(4)
9.3.2 Collection Efficiency of a Filter
394(2)
9.3.3 Pressure Drop through a Filter
396(1)
9.4 Separation by External Electric Field
397(9)
9.4.1 Electrostatic Precipitation
397(5)
9.4.2 Separation by Polarization of Dielectric Particles
402(4)
9.5 Case Studies
406(8)
9.5.1 Cyclone Collection Efficiency for a Polydispersed Particulate Flow
406(1)
9.5.2 Inertial Impaction-Dominated Fibrous Filtration of Fine Particles
407(3)
9.5.3 Numerical Modeling of Gas-Solid Flow in a Cyclone Separator
410(2)
9.5.4 Numerical Modeling of Particulate Removal by Electrostatic Precipitator
412(2)
9.6 Summary
414(1)
Nomenclature
415(2)
Problems
417(4)
References
421(2)
10 Fluidization
423(54)
10.1 Introduction
423(2)
10.2 Dense Phase Gas-Solid Fluidized Beds
425(21)
10.2.1 Classifications of Particles for Fluidization
428(1)
10.2.2 Dense Phase Fluidization
429(9)
10.2.3 External Field Modulated Fluidization
438(6)
10.2.4 Fluidization of Nanoparticles
444(2)
10.3 Circulating Fluidized Beds
446(6)
10.3.1 Components of a Circulating Fluidized Bed
447(1)
10.3.2 Fast Fluidization Regime
447(2)
10.3.3 Fast Fluidization Structure and Transition to Choking
449(2)
10.3.4 Modeling of Flow in Fast Fluidization
451(1)
10.4 Gas-Liquid Bubbling Flows
452(8)
10.4.1 Bubble Formation and Shape Regime
452(4)
10.4.2 Bubble Wake Dynamics and Interaction
456(1)
10.4.3 Bubble Columns
457(3)
10.5 Gas-Liquid-Solid Fluidization
460(3)
10.5.1 Pressure Drop and Phase Holdup
461(1)
10.5.2 Incipient Fluidization and Flow Regimes
461(2)
10.5.3 Bed Contraction and Moving Packed Bed
463(1)
10.6 Case Studies
463(7)
10.6.1 Pressure Balance in CFB
463(2)
10.6.2 Energy Partitions in Riser Transport
465(2)
10.6.3 Kinetic Theory Model for Bubbling Fluidization
467(3)
10.7 Summary
470(1)
Nomenclature
470(2)
Problems
472(2)
References
474(3)
11 Pipe Flow
477(49)
11.1 Introduction
477(1)
11.2 Multiphase Flow Patterns in Pipeline Transport
477(6)
11.2.1 Flow Regimes in Horizontal Pneumatic Conveying
478(2)
11.2.2 Flow Regimes in Horizontal Slurry Pipe Flows
480(1)
11.2.3 Gas-Liquid Flow Regimes in Pipes
481(2)
11.3 Saltation and Pickup Velocities
483(3)
11.3.1 Critical Transport Velocity
483(2)
11.3.2 Pickup Velocity
485(1)
11.4 Pressure Drop
486(7)
11.4.1 Pressure Drop of a Fully Developed Suspension Flow
487(1)
11.4.2 Pressure Drop in Dilute Gas-Solid Flows
488(1)
11.4.3 Pressure Drop in Slurry Flows
488(2)
11.4.4 Pressure Drop in Gas-Liquid Flows
490(1)
11.4.5 Drag Reduction
491(2)
11.5 Phase Distributions of Suspended Pipe Flows
493(4)
11.5.1 Fully Developed Dilute Pipe Flows
493(1)
11.5.2 Effect of Electrostatic Charge on Phase Transport
494(1)
11.5.3 Dilute Transport in a Vertical Pipe
495(2)
11.6 Stratified Flows in Pipes and Ducts
497(6)
11.6.1 Regional-Averaged Theories of Stratified Flows
498(1)
11.6.2 Stratified Gas-Liquid Flows
499(2)
11.6.3 Stratified Gas-Solids Flow
501(2)
11.7 Flows in Bends
503(7)
11.7.1 Single-Phase Flow in a Pipe Bend
503(2)
11.7.2 Particulate Flow in a Pipe Bend
505(2)
11.7.3 Bend Erosion by Particle Collision
507(3)
11.8 Case Studies
510(7)
11.8.1 Particle-Laden Gas Flow and Erosion in a Bend
510(2)
11.8.2 Modeling of Slurry Flow over a Bend
512(1)
11.8.3 Modeling of Transition of Stratified to Nonstratified Flow
513(2)
11.8.4 Modeling of Fully Suspended Slurry Pipe Flow
515(2)
11.9 Summary
517(1)
Nomenclature
517(3)
Problems
520(3)
References
523(3)
12 Flows with Phase Changes and/or Reactions
526(58)
12.1 Introduction
526(1)
12.2 Boiling in Vapor-Liquid Flows
527(7)
12.2.1 Boiling in Stagnant Liquid
527(4)
12.2.2 Boiling in Liquid Pipe Flow
531(3)
12.3 Liquid Spray Dispersion and Evaporation
534(15)
12.3.1 Spray Atomization
535(1)
12.3.2 Evaporating Spray Jets
535(2)
12.3.3 Spray Drying
537(3)
12.3.4 Spray on a Heated Surface
540(1)
12.3.5 Evaporating Spray in Gas-Solid Flows
541(2)
12.3.6 Modeling of Spray Transport and Phase Interactions
543(6)
12.4 Bubbling Reactors in Liquid and Liquid-Solid Media
549(4)
12.4.1 Mass Transfer in Gas-Liquid Media
550(1)
12.4.2 Sparged Stirred Tank
550(1)
12.4.3 Fischer-Tropsch Synthesis in Slurry Bubble Column
551(2)
12.5 Reactive Flows in Gas-Solid Fluidized Beds
553(8)
12.5.1 Fluid Catalytic Cracking
553(2)
12.5.2 Vaporization and Reaction in a Riser
555(2)
12.5.3 Gas Phase Polymerization
557(4)
12.6 Dispersed Fuel Combustion
561(6)
12.6.1 Combustion of a Fuel Droplet
562(2)
12.6.2 Combustion of a Solid Fuel Particle
564(3)
12.7 Case Studies
567(8)
12.7.1 Motion of a Condensing Bubble in a Solution
567(1)
12.7.2 Modeling of FCC Reacting Flow
568(2)
12.7.3 Modeling of Fisher-Tropsch Slurry Bubble Reactor
570(2)
12.7.4 Modeling of Reacting Flow in Coal Gasifier
572(3)
12.8 Summary
575 (1)
Nomenclature
575(2)
Problems
577(3)
References
580(4)
Index 584
Chao Zhu is a Professor in the Department of Mechanical and Industrial Engineering at the New Jersey Institute of Technology. He co-authored Principles of Gas-Solid Flows (Cambridge, 1998) and is a Fellow of the American Society of Mechanical Engineers. Liang-Shih Fan is a Distinguished University Professor and The C. John Easton Professor of Engineering in the Department of Chemical and Biomolecular Engineering at The Ohio State University. He is the Editor-in-Chief of Powder Technology and a Fellow of the US National Academy of Engineering. Zhao Yu was a postdoctoral researcher at The Ohio State University. He is now an Associate Senior Consultant Engineer in Bioproduct Research and Development at Eli Lilly and Company.