Preface |
|
ix | |
Acknowledgements |
|
xi | |
Introduction and Classification of Equation Types |
|
1 | (4) |
|
|
5 | (24) |
|
Definitions of Stability and Linearized Stability Analysis |
|
|
5 | (2) |
|
The Stable Manifold Theorem in the Plane |
|
|
7 | (2) |
|
Global Asymptotic Stability of the Zero Equilibrium |
|
|
9 | (1) |
|
Global Attractivity of the Positive Equilibrium |
|
|
9 | (5) |
|
|
14 | (3) |
|
|
17 | (7) |
|
|
24 | (5) |
|
Local Stability, Semicycles, Periodicity, and Invariant Intervals |
|
|
29 | (18) |
|
|
29 | (1) |
|
Stability of the Zero Equilibrium |
|
|
30 | (2) |
|
Local Stability of the Positive Equilibrium |
|
|
32 | (1) |
|
When is Every Solution Periodic with the Same Period? |
|
|
33 | (2) |
|
Existence of Prime Period-Two Solutions |
|
|
35 | (1) |
|
Local Asymptotic Stability of a Two Cycle |
|
|
36 | (2) |
|
Convergence to Period-Two Solutions When C = 0 |
|
|
38 | (3) |
|
|
41 | (2) |
|
Open Problems and Conjectures |
|
|
43 | (4) |
|
|
47 | (6) |
|
|
47 | (1) |
|
The Case α = γ = A = B = 0 : |
|
|
48 | (1) |
|
The Case α = β = A = C = 0 : |
|
|
49 | (1) |
|
Open Problems and Conjectures |
|
|
49 | (4) |
|
|
53 | (16) |
|
|
53 | (1) |
|
|
54 | (1) |
|
|
55 | (2) |
|
|
57 | (1) |
|
|
58 | (1) |
|
|
59 | (1) |
|
|
60 | (4) |
|
|
61 | (1) |
|
|
62 | (1) |
|
|
62 | (2) |
|
Open Problems and Conjectures |
|
|
64 | (5) |
|
|
69 | (8) |
|
|
69 | (1) |
|
|
70 | (2) |
|
|
72 | (1) |
|
Open Problems and Conjectures |
|
|
72 | (5) |
|
|
77 | (54) |
|
|
77 | (1) |
|
|
78 | (1) |
|
|
79 | (3) |
|
|
82 | (7) |
|
|
83 | (1) |
|
|
84 | (3) |
|
Global Stability and Boundedness |
|
|
87 | (2) |
|
|
89 | (3) |
|
|
90 | (1) |
|
|
90 | (1) |
|
|
91 | (1) |
|
|
92 | (9) |
|
Existence and Local Stability of Period-Two Cycles |
|
|
93 | (3) |
|
|
96 | (1) |
|
|
97 | (3) |
|
Global Behavior of Solutions |
|
|
100 | (1) |
|
|
101 | (8) |
|
|
102 | (1) |
|
Semicycle Analysis of Solutions When q ≤ 1 |
|
|
103 | (2) |
|
Semicycle Analysis and Global Attractivity When q = 1 |
|
|
105 | (2) |
|
Global Attractivity When q ≤ 1 |
|
|
107 | (1) |
|
Long-term Behavior of Solutions When q > 1 |
|
|
107 | (2) |
|
|
109 | (4) |
|
Invariant Intervals and Semicycle Analysis |
|
|
110 | (2) |
|
Global Stability of the Positive Equilibrium |
|
|
112 | (1) |
|
|
113 | (10) |
|
|
114 | (3) |
|
|
117 | (1) |
|
Global Stability Analysis When p ≤ q |
|
|
117 | (6) |
|
Global Stability Analysis When p > q |
|
|
123 | (1) |
|
Open Problems and Conjectures |
|
|
123 | (8) |
|
|
131 | (6) |
|
|
131 | (1) |
|
|
131 | (1) |
|
|
132 | (1) |
|
|
133 | (1) |
|
Open Problems and Conjectures |
|
|
134 | (3) |
|
|
137 | (4) |
|
|
137 | (1) |
|
Open Problems and Conjectures |
|
|
138 | (3) |
|
|
141 | (26) |
|
|
141 | (1) |
|
|
141 | (8) |
|
|
142 | (1) |
|
|
143 | (1) |
|
|
144 | (3) |
|
Global Asymptotic Stability |
|
|
147 | (2) |
|
|
149 | (9) |
|
Existence and Local Stability of Period-Two Cycles |
|
|
150 | (4) |
|
|
154 | (2) |
|
|
156 | (1) |
|
|
157 | (1) |
|
Semicycle Analysis When pr = q + q2/r |
|
|
157 | (1) |
|
|
158 | (5) |
|
|
160 | (2) |
|
|
162 | (1) |
|
Open Problems and Conjectures |
|
|
163 | (4) |
|
|
167 | (16) |
|
|
167 | (1) |
|
|
167 | (5) |
|
Proof of Part (b) of Theorem 10.2.1 |
|
|
169 | (3) |
|
Proof of Part (c) of Theorem 10.2.1 |
|
|
172 | (1) |
|
|
172 | (3) |
|
|
173 | (1) |
|
Global Stability When p ≥ r |
|
|
173 | (1) |
|
|
174 | (1) |
|
|
175 | (5) |
|
|
177 | (2) |
|
|
179 | (1) |
|
Open Problems and Conjectures |
|
|
180 | (3) |
|
|
183 | (18) |
|
Linearized Stability Analysis |
|
|
183 | (1) |
|
|
184 | (5) |
|
|
189 | (3) |
|
|
191 | (1) |
|
Open Problems and Conjectures |
|
|
192 | (9) |
Global Attractivity for Higher Order Equations |
|
201 | (10) |
Bibliography |
|
211 | (6) |
Index |
|
217 | |