Muutke küpsiste eelistusi

E-raamat: Dynamics of Third-Order Rational Difference Equations with Open Problems and Conjectures

, (University of Rhode Island, Kingston, USA)
  • Formaat: 576 pages
  • Ilmumisaeg: 16-Nov-2007
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781040210970
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 80,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 576 pages
  • Ilmumisaeg: 16-Nov-2007
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781040210970
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Extending and generalizing the results of rational equations,

Dynamics of Third Order Rational Difference Equations with Open Problems and Conjectures focuses on the boundedness nature of solutions, the global stability of equilibrium points, the periodic character of solutions, and the convergence to periodic solutions, including their periodic trichotomies. The book also provides numerous thought-provoking open problems and conjectures on the boundedness character, global stability, and periodic behavior of solutions of rational difference equations.

After introducing several basic definitions and general results, the authors examine 135 special cases of rational difference equations that have only bounded solutions and the equations that have unbounded solutions in some range of their parameters. They then explore the seven known nonlinear periodic trichotomies of third order rational difference equations. The main part of the book presents the known results of each of the 225 special cases of third order rational difference equations. In addition, the appendices supply tables that feature important information on these cases as well as on the boundedness character of all fourth order rational difference equations.



A Framework for Future Research

The theory and techniques developed in this book to understand the dynamics of rational difference equations will be useful in analyzing the equations in any mathematical model that involves difference equations. Moreover, the stimulating conjectures will promote future investigations in this fascinating, yet surprisingly little known area of research.
Preface
Acknowledgments
Introduction 1(2)
Preliminaries
3(26)
Introduction
3(1)
Definitions of Stability
3(1)
Linearized Stability Analysis
4(2)
Semicycle Analysis
6(1)
A Comparison Result
7(1)
Full Limiting Sequences
8(1)
Convergence Theorems
9(20)
Equations with Bounded Solutions
29(46)
Introduction
29(3)
Some Straightforward Cases
32(5)
The Second-Order Rational Equation
37(4)
Boundedness by Iteration
41(5)
Boundedness of the Special Case #58
46(2)
Boundedness of xn+1 = α + βxn + xn-2/A + xn
48(6)
Boundedness of the Special Case #63
54(3)
Boundedness of xn+1 = α + βxn + γxn-1 + xn-2/A + xn-1
57(13)
Boundedness of xn+1 = α + βxn + xn-1/xn-1 + Dxn-2
70(2)
Boundedness of xn+1 = α + βxn + xn-2/Cxn-1 + Dxn-2
72(3)
Existence of Unbounded Solutions
75(30)
Introduction
75(3)
Unbounded Solutions of xn+1 = α + βxn + γxn-1 + δxn-2/A + xn
78(7)
Unbounded Solutions of xn+1 = α + βxn + γxn-1 + δxn-2/A + xn-2
85(5)
Unbounded Solutions of xn+1 = α + βxn + γxn-1 + δxn-2/A + Bxn + xn-2
90(5)
Unbounded Solutions of xn+1 = α + βxn + γxn-1 + δxn-2/A + Bxn + Cxn-1
95(5)
Unbounded Solutions of xn+1 xn-2/A + Bxn + Cxn-1
100(1)
Unbounded Solutions in the Special Case #50
100(5)
Periodic Trichotomies
105(28)
Introduction
105(1)
Existence of Prime Period-Two Solutions
106(4)
Period-Two Trichotomies of Eq.(4.0.1)
110(10)
Period-Two Trichotomy of xn+1 = α + βxn + γxn-1 + δxn-2/A + Bxn + Dxn-2
120(7)
Period-Three Trichotomy of xn+1 = δxn-2/A + Bxn + Cxn-1
127(2)
Period-Four Trichotomy of xn+1 = α + βxn + δxn-2/Cxn-1
129(2)
Period-Five Trichotomy of xn+1 = α + δxn-2/Bxn
131(1)
Period-Six Trichotomy of xn+1 = α + βxn/Cxn-1 + xn-2
132(1)
Known Results for Each of the 225 Special Cases
133(328)
Introduction
133(1)
Equation #1: xn+1 α/A
134(1)
Equation #2: xn+1 = α/Bxn
134(2)
Equation #3: xn+1 = α/Cxn-1
136(1)
Equation #4: xn+1 = α/Dxn-2
136(1)
Equation #5: xn+1 = β/A xn
136(1)
Equation #6: xn+1 β/B
136(1)
Equation #7: xn+1 βxn/Cxn-1
137(1)
Equation #8: xn+1 βxn/Dxn-2
138(1)
Equation #9: xn+1 = γ/A xn-1
139(1)
Equation #10: xn+1 = γxn-1/Bxn
140(1)
Equation #11: xn+1 = γ/C
140(1)
Equation #12: xn+1 = γxn-1/Dxn-2
140(1)
Equation #13: xn+1 = γ/A xn-2
140(1)
Equation #14: xn+1 = δxn-2/Bxn
141(1)
Equation #15: xn+1 = δxn-2/Cxn-1
141(1)
Equation #16: xn+1 = δ/D
141(1)
Equation #17: xn+1 = δxn-2/Cxn-1
141(3)
Equation #18: xn+1 = α/A + Cxn-1
144(1)
Equation #19: xn+1 = α/A + Dxn-2
144(1)
Equation #20: xn+1 = α/Bxn + Cxn-1
144(1)
Equation #21: xn+1 = α/Bxn + Dxn-2
145(1)
Equation #22: xn+1 = α/Cxn-1 + Dxn-2
146(1)
Equation #23: xn+1 = βxn/A + Bxn
147(8)
Equation #24: xn+1 βxn/A + Cxn-1
155(11)
The Autonomous Pielou's Equation
156(2)
Periodically Forced Pielou's Equation
158(8)
Equation #25: xn+1 = βxn/A + Dxn-2
166(2)
Equation #26: xn+1 = βxn/Bxn + Cxn-1
168(2)
Equation #27: xn+1 βxn/Bxn + Dxn-2
170(2)
Equation #28: xn+1 = βxn/Cxn-1 + Dxn-2
172(1)
Equation #29: xn+1 = γxn-1/A + Bxn
173(3)
Equation #30: xn+1 = γxn-1/A + Cxn-1
176(1)
Equation #31: xn+1 = γxn-1/A + Dxn-2
176(1)
Equation #32: xn+1 = γxn-1/A + Bxn + Cxn-1
177(2)
Equation #33: xn+1 = γxn-1/Bxn + Dxn-2
179(1)
Equation #34: xn+1 = γxn-1/Cxn-1 + Dxn-2
179(3)
Equation #35: xn+1 = δxn-2/A + Bxn
182(1)
Equation #36: xn+1 = γxn-2/A + Cxn-1
182(1)
Equation #37: xn+1 = γxn-2/A + Dxn-2
183(1)
Equation #38: xn+1 = γxn-2/Bxn + Cxn-1
183(1)
Equation #39: xn+1 = γxn-2/Bxn + Cxn-2
184(2)
Equation #40: xn+1 = γxn-2/Cxn-1 + Dxn-2
186(2)
Equation #41: xn+1 = α + βxn/A
188(1)
Equation #42: xn+1 = α + βxn/Bxn
189(1)
Equation #43: xn+1 = α + βxn/Cxn-1
189(3)
Equation #44: xn+1 = α + βxn/Dxn-2
192(1)
Equation #45: xn+1 = α + γxn-1/A
192(1)
Equation #46: xn+1 = α + γxn-1/Bxn
193(1)
Equation #47: xn+1 = α + γxn-1/Cxn-1
194(1)
Equation #48: xn+1 = α + γxn-1/Dxn-2
194(1)
Equation #49: xn+1 = α + δxn-2/Bxn
195(1)
Equation #50: xn+1 = α + δxn-2/Bxn
195(1)
Equation #51: xn+1 = α + δxn-2/Cxn-1
196(1)
Equation #52: xn+1 = α + δxn-2/Dxn-2
196(1)
Equation #53: xn+1 = βxn + γxn-1/A
197(1)
Equation #54: xn+1 = βxn + γxn-1/Bxn
197(1)
Equation #55: xn+1 = βxn + γxn-1/Cxn-1
198(1)
Equation #56: xn+1 = βxn + γxn-1/Dxn-2
198(1)
Equation #57: xn+1 = βxn + γxn-2/A
199(1)
Equation #58: xn+1 = βxn + γxn-2/Bxn
199(8)
Equation #59: xn+1 = βxn+ δxn-2/Cxn-1
207(1)
Equation #60: xn+1 = βxn +δxn-2/Dxn-2
207(1)
Equation #61: xn+1 = γxn-1 + δxn-2/A
208(1)
Equation #62: xn+1 = γxn-1 +δxn-2/Bxn
209(1)
Equation #63: xn+1 = γxn-1 + δxn-2/Cxn-1
210(7)
Equation #64: xn+1 = γxn-1 + δxn-2.Dxn-2
217(1)
Equation #65: xn+1 = α + βxn/A + Bxn
218(5)
Equation #66: xn+1 = α + βxn/A + Dxn-2
223(2)
Equation #67: xn+1 = α + βxn/A + Dxn-2
225(1)
Equation #68: xn+1 = α + βxn/Bxn +Cxn-1
226(1)
Equation #69: xn+1 = α + βxn/Bxn + βxn
227(1)
Equation #70: xn+1 = α + βxn/Cxn-1 + dxn-2
228(1)
Equation #71: xn+1 = α + γxn-1/A + Bxn
229(1)
Equation #72: xn+1 = α + γxn-1/A + Cxn-1
230(1)
Equation #73: xn+1 = α + γxn-1/A + Dxn-2
230(1)
Equation #74: xn+1 = α + γxn-1/Bxn + Cxn-1
231(1)
Equation #75: xn+1 = α + γxn-1/Bxn + Dxn-2
232(1)
Equation #76: xn+1 = α + γxn-1/Cxn-1 + Dxn-2
232(1)
Equation #77: xn+1 = α + δxn-2/A + Bxn
233(1)
Equation #78: xn+1 = α + δxn-2/A + Cxn-1
234(1)
Equation #79: xn+1 = α + δxn-2/A + Dxn-2
235(1)
Equation #80: xn+1 = α + δxn-2/Bxn + Cxn-1
236(1)
Equation #81: xn+1 = α + δxn-2/Bxn + Dxn-2
237(5)
Equation #82: xn+1 = α + γx-2/Cxn-1 + Dxn-2
242(3)
Equation #83: xn+1 = βxn + γxn-1/A + Bxn
245(1)
Equation #84: xn+1 = βxn + γxn-1/A + Cxn-1
246(3)
Equation #85: xn+1 = βxn + γxn-1/A + Cxn-2
249(2)
Equation #86: xn+1 = βxn + γxn-1/Bxn + Cxn-1
251(2)
Equation #87: xn+1 = βxn + γxn-1/Bxn + Dxn-2
253(2)
Equation #88: xn+1 = βxn + γxn-1/Cxn-1 + Dxn-2
255(2)
Equation #89: xn+1 = βxn + δxn-2/A + Bxn
257(4)
Equation #90: xn+1 = βxn + δxn-2/A + Cxn-1
261(1)
Equation #91: xn+1 = βxn + δxn-2/A + Dxn-2
262(3)
Equation #92: xn+1 = βxn + δxn-2/Bxn + Cxn-1
265(2)
Equation #93: xn+1 = βxn + δxn-2/Bxn + Dxn-2
267(2)
Equation #94: xn+1 = βxn + δxn-2/Cxn-1 + Dxn-2
269(1)
Equation #95: xn+1 = γxn-1 + δn-2/A + Bxn
270(2)
Equation #96: xn+1 = γxn-1 + δn-2/A + Cxn-1
272(3)
Equation #97: xn+1 = γxn-1 + δn-2/A + Dxn-2
275(1)
Equation #98: xn+1 = γxn-1 + δn-2/Bxn + Cxn-1
276(3)
Equation #99: xn+1 = γxn-1 + δn-2/Bxn + Dxn-2
279(2)
Equation #100: xn+1 = γxn-1 + δn-2/Cxn-1 + Dxn-2
281(1)
Equation #101: xn+1 = α/A + Bxn + Cxn-1
282(1)
Equation #102: xn+1 = α/A + Bxn +Dxn-2
283(1)
Equation #103: xn+1 = α/A + Cxn-1 + Dxn-2
283(1)
Equation #104: xn+1 = α/Bxn + Cxn-1 + Dxn-2
284(1)
Equation #105: xn+1 = βxn/A + Bxn + Cxn-1
284(1)
Equation #106: xn+1 = βxn/A + Bxn + Dxn-2
285(7)
Equation #107: xn+1 = βxn/A + Cxn-1 + Dxn-2
292(2)
Equation #108: xn+1 = βxn/Bxn + Cxn-1 + Dxn-2
294(1)
Equation #109: xn+1 = γxn-1/A + Bxn + Cxn-1
295(8)
Equation #110: xn+1 = γn-1/A + Bxn + Dxn-2
303(1)
Equation #111: xn+1 = γn-1/A + Cxn-1 + Dxn-2
303(3)
Equation #112: xn+1 = γxn-1/Bxn + Cxn-1 + Dxn-2
306(2)
Equation #113: xn+1 = δxn-2/A + Bxn + Cxn-1
308(1)
Equation #114: xn+1 = δxn-2/A + Bxn + Dxn-2
308(1)
Equation #115: xn+1 = δxn-2/A + Cxn-1 + Dxn-2
309(1)
Equation #116: xn+1 = δxn-2/Bxn + Cxn-1 + Dxn-2
309(1)
Equation #117: xn+1 = α + βxn + γxn-1/A
310(1)
Equation #118: xn+1 = α + βxn + γxn-1/Bxn
310(1)
Equation #119: xn+1 = α + βxn + γxn-1/Cxn-1
310(1)
Equation #120: xn+1 = α + βxn + γxn-1/Dxn-2
311(2)
Equation #121: xn+1 = α + βxn + δxn-2/A
313(1)
Equation #122: xn+1 = α + βxn + δxn-2/Bxn
313(1)
Equation #123: xn+1 = α + βxn + δxn-2/Cxn-1
313(1)
Equation #124: xn+1 = α + βxn + δxn-2/Dxn-2
314(1)
Equation #125: xn+1 = α + γxn-1 + δxn-2/A
314(1)
Equation #126: xn+1 = α + γxn-1 + δxn-2/Bxn
314(3)
Equation #127: xn+1 = α + γxn-1 + δxn-2/Cxn-1
317(1)
Equation #128: xn+1 = α + γ xn-1 + δ xn-2 / Dxn-2
317(1)
Equation #129: xn+1 = β xn + γ xn-1 + δ xn-2 / A
317(1)
Equation #130: xn+1 = β xn + γ xn-1 + δ xn-2 / B xn
318(1)
Equation #131: xn+1 = β xn + γ xn-1 + δ xn-2 / D xn-2
318(1)
Equation #132: xn+1 = β xn + γ xn-1 + δ xn-2 / D xn-2
319(1)
Equation #133: xn+1 = α / A + B xn + C xn-1 + D xn-2
320(1)
Equation #134: xn+1 = β xn / A + B xn + C xn-1 + D xn-2
320(1)
Equation #135: xn+1 = γ xn-1 / A + B xn + C xn-1 + D xn-2
320(1)
Equation #136: xn+1 = δ xn-2 / A + B xn + C xn-1 + D xn-2
321(4)
Equation #137: xn+1 = α + β xn + γ xn-1 + δ xn-2 / A
325(1)
Equation #138: xn+1 = α + β xn + γ xn-1 + δ xn-2 / A
325(1)
Equation #139: xn+1 = α + β xn + γ xn-1 + δ xn-2 / C xn-1
325(1)
Equation #140: xn+1 = α + β xn + γ xn-1 + δ xn-2 / D xn-2
326(1)
Equation #141: xn+1 = α + β xn / A + B xn + C xn-1
327(5)
Equation #142: xn+1 = α + β xn / A + B xn + D xn-2
332(1)
Equation #143: xn+1 = α + β xn / A + C xn-1 + D xn-2
333(1)
Equation #144: xn+1 = α + β xn / B xn + C xn-1 + D xn-2
334(1)
Equation #145: xn+1 = α + γ xn-1 / A + B xn + D xn-2
335(2)
Equation #146: xn+1 = α + γ xn-1 / A + B xn + D xn-2
337(1)
Equation #147: xn+1 = α + γ xn-1 / A + C xn-1 + D xn-2
338(1)
Equation #148: xn+1 = α + γ xn-1 / B xn + C xn-1 + D xn-2
339(2)
Equation #149: xn+1 = α + δ xn-2 / A + B xn + C xn-1
341(2)
Equation #150: xn+1 = α + δ xn-2 / A + B xn + D xn-2
343(1)
Equation #151: xn+1 = α + δxn-2/A+Cxn-1 + Dxn-2
344(1)
Equation #152: xn+1 = α + δxn-2/Bxn + Cxn-1 + Dxn-2
345(1)
Equation #153: xn+1 = βxn + γxn-1/A + Bxn + Cxn-1
345(2)
Equation #154: xn+1 = βxn + γxn-1/A + Bxn + Dxn-2
347(1)
Equation #155: xn+1 = βxn + γxn-1/A + Cxn-1 + Dxn-2
348(1)
Equation #156: xn+1 = βxn + γxn-1/Bxn + Cxn-1 + Dxn-2
349(1)
Equation #157: xn+1 = βxn + δxn-2/A + Bxn + Cxn-1
349(11)
Equation #158: xn+1 = βxn + δxn-2/A + Bxn + Dxn-2
360(1)
Equation #159: xn+1 = βxn + δxn-2/A + Cxn-1 + Dxn-2
361(1)
Equation #160: xn+1 = βxn + δxn-2/Bxn + Cxn-1 + Dxn-2
362(1)
Equation #161: xn+1 = γxn-1 + δxn-2/A + Bxn + Cxn-1
362(2)
Equation #162: xn+1 = γxn-1 + δxn-2/A + Bxn + Dxn-2
364(1)
Equation #163: xn+1 = γxn-1 + δxn-2/A + Cxn-1 + Dxn-2
365(1)
Equation #164: xn+1 = γxn-1 + δxn-2/Bxn + Cxn-1 + Dxn-2
366(1)
Equation #165: xn+1 = α + βxn + γxn-1/A + Bxn
366(1)
Equation #166: xn+1 = α + βxn + γxn-1/A + Cxn-1
367(3)
Equation #167: xn+1 = α + βxn + γxn-1/A + Dxn-2
370(1)
Equation #168: xn+1 = α + βxn + γxn-1/Bxn + Cxn-1
371(1)
Equation #169: xn+1 = α + βxn + γxn-1/Bxn + Dxn-2
371(1)
Equation #170: xn+1 = α + βxn + γxn-1/Cxn-1 + Dxn-2
372(1)
Equation #171: xn+1 = α + βxn + δxn-2/A + Bxn
373(4)
Equation #172: xn+1 = α + βxn + δxn-2/A + Cxn-1
377(2)
Equation #173 : xn+1 = α + δxn-2 / A + Dxn-2
379(1)
Equation #174 : xn+1 = α + βxn + δxn-2 / Bxn + Cxn-1
380(2)
Equation #175 : xn+1 = α + βxn + δxn-2 / Bxn + Cxn-2
382(1)
Equation #176 : xn+1 = α + βxn + δxn-2 / Bxn + Dxn-2
383(1)
Equation #177 : xn+1 = α + γxn-1 + δxn-2 / A + Bxn
383(1)
Equation #178 : xn+1 = α + γxn-1 + δxn-2 / A + Cxn-1
384(4)
Equation #179 : xn+1 = α + γxn-1 + δxn-2 / A +Dxn-2
388(1)
Equation #180 : xn+1 = α + γxn-1 + δxn-2 / Bxn + Cxn-1
389(2)
Equation #181 : xn+1 = α + γxn-1 + δxn-2 / Bxn + Dxn-2
391(1)
Equation #182 : xn+1 = α + γxn-1 + δxn-2 / Cxn-1 + Dxn-2
392(1)
Equation #183 : xn+1 = βxn + γxn-1 + δxn-2 / A + Bxn
392(1)
Equation #184 : xn+1 = βxn + γxn-1 + δxn-2 / A + Dxn-2
393(1)
Equation #185 : xn+1 = βxn + γxn-1 + δxn-2 /A + Dxn-2
394(1)
Equation #186 : xn+1 = βxn + γxn-1 + δxn-2 / A + Cxn-1
395(2)
Equation #187 : xn+1 = βxn + γxn-1 +δxn-2 / Bxn + Cxn-1
397(1)
Equation #188 : xn+1 = βxn + γxn-1 + δxn-2 /Cxn-1 + Dxn-2
398(1)
Equation #189 : xn+1 = α + βxn + /A + Bxn + Cxn-1 + Dxn-2
399(1)
Equation #190 : xn+1 = α + γxn-1 /A + Bxn + Cxn-1 + Dxn-2
400(1)
Equation #191 : xn+1 = α + βxn + / A + Bxn + Cxn-1 + Dxn-2
400(1)
Equation #192 : xn+1 = βxn + γxn-1 /A + Bxn + Cxn-1 + Dxn-2
401(1)
Equation #193 : xn+1 = βxn + γxn-1 / A + Bxn + Cxn-1 + Dxn-2
402(1)
Equation #194 : xn+1 = γxn-1 + δxn-2 /A + Bxn + Cxn-1 + Dxn-2
403(1)
Equation #195: xn+1 = α + βxn + γn-1 + δxn-2/A + Bxn
403(15)
Equation #196: xn+1 = α + βxn + γn-1 + δxn-2/A + Cxn
418(1)
Equation #197: xn+1 = α + βxn + γn-1 + δxn-2/A + Dxn
419(1)
Equation #198: xn+1 = α + βxn + γn-1 + δxn-2/A + Cxn
420(1)
Equation #199: xn+1 = α + βxn + γn-1 + δxn-2/A + Dxn
421(1)
Equation #200: xn+1 = α + βxn + γn-1 + δxn-2/A + Dxn
422(1)
Equation #201: xn+1 = α + βxn + γn-1/A + Bxn + Cxn-1
422(6)
Equation #202: xn+1 = α + βxn + γn-1/A + Bxn + Dxn-1
428(1)
Equation #203: xn+1 = α + βxn + γn-1/A + Cxn + Dxn-1
429(1)
Equation #204: xn+1 = α + βxn + γn-1/B + Cxn + Dxn-1
430(1)
Equation #205: xn+1 = α + βxn + γn-1/A + Bxn + Cxn-1
431(1)
Equation #206: xn+1 = α + βxn + γn-1/A + Bxn + Dxn-1
432(1)
Equation #207: xn+1 = α + βxn + γn-1/A + Cxn + Dxn-1
432(1)
Equation #208: xn+1 = α + βxn + γn-1/B + Cxn + Dxn-1
433(1)
Equation #209: xn+1 = α + βxn + γn-1/A + Bxn + Cxn-1
434(1)
Equation #210: xn+1 = α + βxn + γn-1/A + Bxn + Cxn-1
435(1)
Equation #211: xn+1 = α + βxn + γn-1/A + Bxn + Cxn-1
436(1)
Equation #212: xn+1 = α + βxn + γn-1/B + Cxn + Dxn-1
437(1)
Equation #213: xn+1 = α + βxn + γn-1/A + Bxn + Cxn-1
437(2)
Equation #214: xn+1 = α + βxn + γn-1/A + Bxn + Dxn-1
439(1)
Equation #215: xn+1 = α + βxn + γn-1/A + Cxn + Dxn-1
440(1)
Equation #216: xn+1 = α + βxn + γn-1/B + Cxn + Dxn-1
441(1)
Equation #217 : xn+1 = α + βxn + γxn-1 A + Bxn + Cxn-1 + Dxn-2
442(1)
Equation #218 : xn+1 = α + βxn + δxn-2 A + Bxn + Cxn-1 + Dxn-2
442(1)
Equation #219 : xn+1 = α + γxn-1 + δxn-2 A + Bxn + Cxn-1 + Dxn-2
443(1)
Equation #220 : xn+1 = βxn + γxn-1 + δxn-2 A + Bxn + Cxn-1 + Dxn-2
444(1)
Equation #221 : xn+1 = α + βxn + γxn-1 + δxn-2 A + Bxn + Cxn-1
445(4)
Equation #222 : xn+1 = α + βxn + γxn-1 + δxn-2 A + Bxn + Dxn-2
449(1)
Equation #223 : xn+1 = α + βxn + γxn-1 + δxn-2 A + Cxn-1 + Dxn-2
450(1)
Equation #224 : xn+1 = α + βxn + γxn-1 + δxn-2 Bxn + Cxn-1 + Dxn-2
451(1)
Equation #225 : xn+1 = α + βxn + γxn-1 + δxn-2 A + Bxn + Cxn-1 + Dxn-2
452(9)
Appendix A 461(52)
Appendix B 513(22)
Bibliography 535(18)
Index 553
Camouzis, Elias; Ladas, G.