Muutke küpsiste eelistusi

E-raamat: Eddy Covariance: A Practical Guide to Measurement and Data Analysis

Edited by , Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 172,28 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This highly practical handbook is an exhaustive treatment of eddy covariance measurement that will be of keen interest to scientists who are not necessarily specialists in micrometeorology. The chapters cover measuring fluxes using eddy covariance technique, from the tower installation and system dimensioning to data collection, correction and analysis.

With a state-of-the-art perspective, the authors examine the latest techniques and address the most up-to-date methods for data processing and quality control. The chapters provide answers to data treatment problems including data filtering, footprint analysis, data gap filling, uncertainty evaluation, and flux separation, among others. The authors cover the application of measurement techniques in different ecosystems such as forest, crops, grassland, wetland, lakes and rivers, and urban areas, highlighting peculiarities, specific practices and methods to be considered. The book also covers what to do when you have all your data, summarizing the objectives of a database as well as using case studies of the CarboEurope and FLUXNET databases to demonstrate the way they should be maintained and managed. Policies for data use, exchange and publication are also discussed and proposed.

This one compendium is a valuable source of information on eddy covariance measurement that allows readers to make rational and relevant choices in positioning, dimensioning, installing and maintaining an eddy covariance site; collecting, treating, correcting and analyzing eddy covariance data; and scaling up eddy flux measurements to annual scale and evaluating their uncertainty.
1 The Eddy Covariance Method
1(20)
Thomas Foken
Marc Aubinet
Ray Leuning
1.1 History
1(1)
1.2 Preliminaries
2(4)
1.2.1 Context of Eddy Covariance Measurements
2(2)
1.2.2 Reynolds Decomposition
4(1)
1.2.3 Scalar Definition
5(1)
1.3 One Point Conservation Equations
6(3)
1.3.1 Dry Air Mass Conservation (Continuity) Equation
6(1)
1.3.2 Momentum Conservation Equation
7(1)
1.3.3 Scalar Conservation Equation
8(1)
1.3.4 Enthalpy Equation
9(1)
1.4 Integrated Relations
9(3)
1.4.1 Dry Air Budget Equation
10(1)
1.4.2 Scalar Budget Equation (Generalized Eddy Covariance Method)
10(2)
1.5 Spectral Analysis
12(9)
1.5.1 Spectral Analysis of Turbulence
13(1)
1.5.2 Spectral Analysis of Atmospheric Turbulence
13(1)
1.5.3 Sensor Filtering
14(1)
1.5.4 Impacts of Measurement Height and Wind Velocity
15(1)
References
16(5)
2 Measurement, Tower, and Site Design Considerations
21(38)
J. William Munger
Henry W. Loescher
Hongyan Luo
2.1 Introduction
21(1)
2.2 Tower Considerations
22(13)
2.2.1 Theoretical Considerations for Tower Design
22(1)
2.2.1.1 Diverse Ecosystems and Environments
22(1)
2.2.1.2 Physical Effects on Surrounding Flows Due to the Presence of Tower Structure
22(4)
2.2.1.3 Size of Horizontal Supporting Boom
26(1)
2.2.1.4 Tower Deflection and Oscillations
27(1)
2.2.1.5 Recirculation Zone at the Opening in a Tall Canopy
27(1)
2.2.2 Tower Design and Science Requirements
28(1)
2.2.2.1 Tower Location Requirements
28(2)
2.2.2.2 Tower Structure Requirements
30(1)
2.2.2.3 Tower Height Requirements
31(1)
2.2.2.4 Tower Size Requirements
32(1)
2.2.2.5 Instrument Orientation Requirements
33(1)
2.2.2.6 Tower Installation and Site Impact Requirements
34(1)
2.3 Sonic Anemometer
35(5)
2.3.1 General Principles
35(1)
2.3.2 Problems and Corrections
36(1)
2.3.3 Requirements for Sonic Choice, Positioning, and Use
37(3)
2.4 Eddy CO2/H2O Analyzer
40(11)
2.4.1 General Description
40(1)
2.4.2 Closed-Path System
41(1)
2.4.2.1 Absolute and Differential Mode
41(1)
2.4.2.2 Tubing Requirements for Closed-Path Sensors
42(4)
2.4.2.3 Calibration for CO2
46(1)
2.4.2.4 Water Vapor Calibration
47(1)
2.4.3 Open-Path Systems
47(1)
2.4.3.1 Installation and Maintenance
47(1)
2.4.3.2 Calibration
48(1)
2.4.4 Open and Closed Path Advantages and Disadvantages
48(2)
2.4.5 Narrow-Band Spectroscopic CO2 Sensors
50(1)
2.5 Profile Measurement
51(8)
2.5.1 Requirements for Measurement Levels
53(1)
2.5.2 Requirements for Profile Mixing Ratio Measurement
54(1)
References
54(5)
3 Data Acquisition and Flux Calculations
59(26)
Corinna Rebmann
Olaf Kolle
Bernard Heinesch
Ronald Queck
Andreas Ibrom
Marc Aubinet
3.1 Data Transfer and Acquisition
60(5)
3.2 Flux Calculation from Raw Data
65(14)
3.2.1 Signal Transformation in Meteorological Units
66(1)
3.2.1.1 Wind Components and Speed of Sound from the Sonic Anemometer
66(1)
3.2.1.2 Concentration from a Gas Analyzer
67(1)
3.2.2 Quality Control of Raw Data
67(4)
3.2.3 Variance and Covariance Computation
71(1)
3.2.3.1 Mean and Fluctuation Computations
71(1)
3.2.3.2 Time Lag Determination
72(1)
3.2.4 Coordinate Rotation
73(1)
3.2.4.1 Requirements for the Choice of the Coordinate Frame and Its Orientation
73(2)
3.2.4.2 Coordinate Transformation Equations
75(1)
3.2.4.3 Determination of Rotation Angles
76(3)
3.3 Flux Determination
79(6)
3.3.1 Momentum Flux
79(1)
3.3.2 Buoyancy Flux and Sensible Heat Flux
80(1)
3.3.3 Latent Heat Flux and Other Trace Gas Fluxes
80(1)
3.3.4 Derivation of Additional Parameters
80(2)
References
82(3)
4 Corrections and Data Quality Control
85(48)
Thomas Foken
Ray Leuning
Steven R. Oncley
Matthias Mauder
Marc Aubinet
4.1 Flux Data Correction
86(22)
4.1.1 Corrections Already Included into the Raw Data Analysis (Chap. 3)
86(1)
4.1.2 Conversion of Buoyancy Flux to Sensible Heat Flux (SND-correction)
86(1)
4.1.3 Spectral Corrections
87(1)
4.1.3.1 Introduction
87(1)
4.1.3.2 High-Frequency Loss Corrections
88(8)
4.1.3.3 Low-Cut Frequency
96(1)
4.1.4 WPL Corrections
97(1)
4.1.4.1 Introduction
97(1)
4.1.4.2 Open-Path Systems
97(2)
4.1.4.3 WPL and Imperfect Instrumentation
99(1)
4.1.4.4 Closed-Path Systems
99(2)
4.1.5 Sensor-Specific Corrections
101(1)
4.1.5.1 Flow Distortion Correction of Sonic Anemometers
101(2)
4.1.5.2 Correction Due to Sensor Head Heating of the Open-Path Gas Analyzer LiCor 7500
103(1)
4.1.5.3 Corrections to the Krypton Hygrometer KH20
103(1)
4.1.5.4 Corrections for CH4 and N2O Analyzers
104(1)
4.1.6 Nonrecommended Corrections
105(1)
4.1.7 Overall Data Correction
106(2)
4.2 Effect of the Unclosed Energy Balance
108(4)
4.2.1 Reasons for the Unclosed Energy Balance
108(3)
4.2.2 Correction of the Unclosed Energy Balance
111(1)
4.3 Data Quality Analysis
112(7)
4.3.1 Quality Control of Eddy Covariance Measurements
113(1)
4.3.2 Tests on Fulfilment of Theoretical Requirements
114(1)
4.3.2.1 Steady State Tests
115(1)
4.3.2.2 Test on Developed Turbulent Conditions
116(1)
4.3.3 Overall Quality Flag System
117(2)
4.4 Accuracy of Turbulent Fluxes After Correction and Quality Control
119(6)
4.5 Overview of Available Correction Software
125(8)
References
125(8)
5 Nighttime Flux Correction
133(26)
Marc Aubinet
Christian Feigenwinter
Bernard Heinesch
Quentin Laffineur
Dario Papale
Markus Reichstein
Janne Rinne
Eva Van Gorsel
5.1 Introduction
133(3)
5.1.1 History
133(1)
5.1.2 Signs Substantiating the Night Flux Error
134(1)
5.1.2.1 Comparison with Bottom Up Approaches
134(1)
5.1.2.2 Sensitivity of Flux to Friction Velocity
134(1)
5.1.3 The Causes of the Problem
135(1)
5.2 Is This Problem Really Important?
136(7)
5.2.1 In Which Case Should the Night Flux Error Be Corrected?
137(1)
5.2.2 What Is the Role of Storage in This Error?
137(1)
5.2.3 What Is the Impact of Night Flux Error on Long-Term Carbon Sequestration Estimates?
138(1)
5.2.4 What Is the Impact of the Night Flux Error on Functional Relationships?
139(1)
5.2.5 What Is the Impact of the Night Flux Error on Other Fluxes?
139(4)
5.3 How to Implement the Filtering Procedure?
143(5)
5.3.1 General Principle
143(2)
5.3.2 Choice of the Selection Criterion
145(1)
5.3.3 Filtering Implementation
145(2)
5.3.4 Evaluation
147(1)
5.4 Correction Procedures
148(11)
5.4.1 Filtering + Gap Filling
148(1)
5.4.2 The ACMB Procedure
149(1)
5.4.2.1 History
149(1)
5.4.2.2 Procedure
150(1)
5.4.2.3 Evaluation
151(1)
References
152(7)
6 Data Gap Filling
159(14)
Dario Papale
6.1 Introduction
159(1)
6.2 Gap Filling: Why and When Is It Needed?
160(1)
6.3 Gap-Filling Methods
160(9)
6.3.1 Meteorological Data Gap Filling
162(1)
6.3.2 General Rules and Strategies (Long Gaps)
163(1)
6.3.2.1 Sites with Management and Disturbances
164(1)
6.3.3 Methods Description
165(1)
6.3.3.1 Mean Diurnal Variation
165(1)
6.3.3.2 Look-Up Tables
165(2)
6.3.3.3 Artificial Neural Networks
167(1)
6.3.3.4 Nonlinear Regressions
168(1)
6.3.3.5 Process Models
168(1)
6.4 Uncertainty and Quality Flags
169(1)
6.5 Final Remarks
170(3)
References
171(2)
7 Uncertainty Quantification
173(38)
Andrew D. Richardson
Marc Aubinet
Alan G. Barr
David Y. Hollinger
Andreas Ibrom
Gitta Lasslop
Markus Reichstein
7.1 Introduction
173(5)
7.1.1 Definitions
175(1)
7.1.2 Types of Errors
175(2)
7.1.3 Characterizing Uncertainty
177(1)
7.1.4 Objectives
177(1)
7.2 Random Errors in Flux Measurements
178(10)
7.2.1 Turbulence Sampling Error
179(1)
7.2.2 Instrument Errors
179(1)
7.2.3 Footprint Variability
180(1)
7.2.4 Quantifying the Total Random Uncertainty
180(2)
7.2.5 Overall Patterns of the Random Uncertainty
182(5)
7.2.6 Random Uncertainties at Longer Time Scales
187(1)
7.3 Systematic Errors in Flux Measurements
188(15)
7.3.1 Systematic Errors Resulting from Unmet Assumptions and Methodological Challenges
188(2)
7.3.2 Systematic Errors Resulting from Instrument Calibration and Design
190(1)
7.3.2.1 Calibration Uncertainties
190(4)
7.3.2.2 Spikes
194(1)
7.3.2.3 Sonic Anemometer Errors
194(1)
7.3.2.4 Infrared Gas Analyzer Errors
194(1)
7.3.2.5 High-Frequency Losses
195(1)
7.3.2.6 Density Fluctuations
195(2)
7.3.2.7 Instrument Surface Heat Exchange
197(1)
7.3.3 Systematic Errors Associated with Data Processing
197(1)
7.3.3.1 Detrending and High-Pass Filtering
198(3)
7.3.3.2 Coordinate Rotation
201(1)
7.3.3.3 Gap Filling
201(1)
7.3.3.4 Flux Partitioning
202(1)
7.4 Closing Ecosystem Carbon Budgets
203(1)
7.5 Conclusion
203(8)
References
204(7)
8 Footprint Analysis
211(52)
Ullar Rannik
Andrey Sogachev
Thomas Foken
Mathias Gockede
Natascha Kljun
Monique Y. Leclerc
Timo Vesala
8.1 Concept of Footprint
211(3)
8.2 Footprint Models for Atmospheric Boundary Layer
214(10)
8.2.1 Analytical Footprint Models
214(2)
8.2.2 Lagrangian Stochastic Approach
216(1)
8.2.3 Forward and Backward Approach by LS Models
217(2)
8.2.4 Footprints for Atmospheric Boundary Layer
219(4)
8.2.5 Large-Eddy Simulations for ABL
223(1)
8.3 Footprint Models for High Vegetation
224(5)
8.3.1 Footprints for Forest Canopy
224(2)
8.3.2 Footprint Dependence on Sensor and Source Heights
226(1)
8.3.3 Influence of Higher-Order Moments
227(2)
8.4 Complicated Landscapes and Inhomogeneous Canopies
229(14)
8.4.1 Closure Model Approach
229(2)
8.4.2 Model Validation
231(2)
8.4.3 Footprint Estimation by Closure Models
233(4)
8.4.4 Footprints over Complex Terrain
237(4)
8.4.5 Modeling over Urban Areas
241(2)
8.5 Quality Assessment Using Footprint Models
243(9)
8.5.1 Quality Assessment Methodology
244(5)
8.5.2 Site Evaluation with Analytical and LS Footprint Models
249(1)
8.5.3 Applicability and Limitations
250(2)
8.6 Validation of Footprint Models
252(11)
References
253(10)
9 Partitioning of Net Fluxes
263(28)
Markus Reichstein
Paul C. Stoy
Ankur R. Desai
Gitta Lasslop
Andrew D. Richardson
9.1 Motivation
263(1)
9.2 Definitions
264(2)
9.3 Standard Methods
266(12)
9.3.1 Overview
266(1)
9.3.2 Nighttime Data-Based Methods
266(3)
9.3.2.1 Model Formulation: Temperature - Measurements
269(1)
9.3.2.2 Reco Model Formulation
269(1)
9.3.2.3 Challenges: Additional Drivers of Respiration
270(1)
9.3.2.4 Challenges: Photosynthesis - Respiration Coupling and Within-Ecosystem Transport
271(2)
9.3.3 Daytime Data-Based Methods
273(1)
9.3.3.1 Model Formulation: The NEE Light Response
273(2)
9.3.3.2 Challenges: Additional Drivers and the FLUXNET Database Approach
275(2)
9.3.3.3 Unresolved Issues and Future Work
277(1)
9.4 Additional Considerations and New Approaches
278(4)
9.4.1 Oscillatory Patterns
278(1)
9.4.2 Model Parameterization
278(1)
9.4.3 Flux Partitioning Using High-Frequency Data
279(1)
9.4.4 Flux Partitioning Using Stable Isotopes
279(2)
9.4.5 Chamber-Based Approaches
281(1)
9.4.6 Partitioning Water Vapor Fluxes
281(1)
9.5 Recommendations
282(9)
References
283(8)
10 Disjunct Eddy Covariance Method
291(18)
Janne Rinne
Christof Ammann
10.1 Introduction
291(1)
10.2 Theory
291(3)
10.2.1 Sample Interval
292(1)
10.2.2 Response Time
292(1)
10.2.3 Definition of DEC
293(1)
10.3 Practical Applications of DEC
294(6)
10.3.1 DEC by Grab Sampling
294(3)
10.3.2 DEC by Mass Scanning
297(3)
10.3.3 Use of DEC to Reduce the Burden on Data Transfer and Storage
300(1)
10.4 DEC in Spectral Space
300(3)
10.5 Uncertainty Due to DEC
303(2)
10.6 On the History of the DEC Approach
305(4)
References
306(3)
11 Eddy Covariance Measurements over Forests
309(10)
Bernard Longdoz
Andre Granier
11.1 Introduction
309(1)
11.2 Flux Computation, Selection, and Dependence
310(1)
11.2.1 Correction for High Frequency Losses
310(1)
11.2.2 Rotation Method
310(1)
11.2.3 Friction Velocity Threshold
311(1)
11.2.4 Selection Based on Footprint
311(1)
11.3 Additional Measurements
311(6)
11.3.1 Vertical Profile of Concentration in Canopy Air
312(1)
11.3.2 Leaf Area Index
312(1)
11.3.3 Biomass Estimates
313(2)
11.3.4 Sap Flow
315(1)
11.3.5 Extractable Soil Water, Throughfall, and Stem Flow
315(1)
11.3.6 Heat Storage
316(1)
11.4 Impact of Ecosystem Management and Manipulation
317(2)
References
317(2)
12 Eddy Covariance Measurements over Crops
319(14)
Christine Moureaux
Eric Ceschia
Nicola Arriga
Pierre Beziat
Werner Eugster
Werner L. Kutsch
Elizabeth Pattey
12.1 Introduction
319(3)
12.2 Measurement System
322(4)
12.2.1 Choice of the Site and Communication with the Farmer
322(1)
12.2.2 Flux Tower and Meteorological Station Configuration
323(1)
12.2.3 Measurement Height
324(1)
12.2.4 Maintenance
325(1)
12.3 Flux Calculation
326(1)
12.4 Flux Corrections
326(1)
12.4.1 Storage Term
326(1)
12.4.2 Nighttime Flux Data Screening
327(1)
12.5 Data Gap Filling and Footprint Evaluation
327(1)
12.6 Cumulated Carbon Exchange
327(1)
12.7 Additional Measurements
328(1)
12.8 Future Experimentation
329(4)
References
330(3)
13 Eddy Covariance Measurements over Grasslands
333(12)
Georg Wohlfahrt
Katja Klumpp
Jean-Francois Soussana
13.1 Historic Overview of Grassland Eddy Covariance Flux Measurements
333(1)
13.2 Peculiarities of Eddy Covariance Flux Measurements over Grasslands
334(3)
13.3 Estimating Grassland Carbon Sequestration from Flux Measurements
337(2)
13.4 Additional Measurements
339(1)
13.5 Other Greenhouse Gases
340(5)
References
341(4)
14 Eddy Covariance Measurements over Wetlands
345(20)
Tuomas Laurila
Mika Aurela
Juha-Pekka Tuovinen
14.1 Introduction
345(1)
14.2 Historic Overview
346(6)
14.3 Ecosystem-Specific Considerations
352(2)
14.4 Complementary Measurements
354(2)
14.5 EC Measurements in the Wintertime
356(2)
14.6 Carbon Balances and Climate Effects
358(2)
14.7 Concluding Remarks
360(5)
References
360(5)
15 Eddy Covariance Measurements over Lakes
365(12)
Timo Vesala
Werner Eugster
Anne Ojala
15.1 Introduction
365(2)
15.2 Existing Studies
367(1)
15.3 Surface-Specific Siting Problems
368(9)
15.3.1 Stratification of Lakes
369(1)
15.3.2 Aqueous Chemistry of CO2
369(1)
15.3.3 Land-Lake Interactions
370(2)
15.3.4 Quality Control Procedures
372(1)
15.3.5 Mounting Instruments
373(1)
References
374(3)
16 Eddy Covariance Measurements Over Urban Areas
377(22)
Christian Feigenwinter
Roland Vogt
Andreas Christen
16.1 Introduction
377(5)
16.1.1 Scales in Urban Climatology
378(1)
16.1.2 The Urban Atmosphere
379(1)
16.1.3 Exchange Processes in the Urban Atmosphere
380(1)
16.1.4 Characterization of the Urban Surface-Atmosphere Interface
381(1)
16.2 Conceptual Framework for Urban EC Measurements
382(6)
16.2.1 Turbulence Characteristics
384(1)
16.2.2 The Volume Balance Approach
384(1)
16.2.2.1 Turbulent Heat Fluxes in the Context of Urban Energy Balance Studies
385(1)
16.2.2.2 Evapotranspiration in the Context of Urban Water Balance Studies
386(1)
16.2.2.3 CO2 Fluxes in the Context of Urban Metabolism Studies
386(1)
16.2.3 Other Trace Gases and Aerosols
387(1)
16.3 Challenges in the Siting of Urban EC Stations
388(1)
16.4 Implications of the Peculiarities of the Urban Boundary Layer on EC Measurements
389(5)
16.4.1 Advection and Storage
389(2)
16.4.2 Flow Distortion
391(2)
16.4.3 Night Flux Problem, Gap Filling, and QC/QA
393(1)
16.4.4 Service and Maintenance of Instruments
393(1)
16.5 Summary and Conclusions
394(5)
References
395(4)
17 Database Maintenance, Data Sharing Policy, Collaboration
399(26)
Dario Papale
Deborah A. Agarwal
Dennis Baldocchi
Robert B. Cook
Joshua B. Fisher
Catharine van Ingen
17.1 Data Management
400(8)
17.1.1 Functions
401(2)
17.1.2 Flux Tower Repositories
403(1)
17.1.3 Regional Repositories
404(1)
17.1.3.1 One Example: The European Eddy Covariance Flux Database System
404(2)
17.1.4 The FLUXNET Initiative and Database
406(2)
17.2 Data Practices
408(5)
17.2.1 Contributing Data and Reporting Protocols
408(1)
17.2.2 Common Naming/Units/Reporting/Versioning
409(1)
17.2.2.1 Enabling Cross-site Analysis: Site Identifier, Variables, and Units
409(1)
17.2.2.2 Data Releases
410(1)
17.2.2.3 File Naming
411(1)
17.2.3 Ancillary Data Collection
412(1)
17.3 Data User Services
413(4)
17.3.1 Data Products: The Example of fluxdata.org
413(1)
17.3.1.1 Users and Use Cases
413(2)
17.3.1.2 The Public Access Area
415(1)
17.3.1.3 The Authorized User Support Area
415(2)
17.3.1.4 Measurement Site Scientist Support Functions
417(1)
17.4 Data Sharing and Policy of Uses
417(8)
17.4.1 Data Sharing Motivation
417(2)
17.4.2 Data Policy of Use
419(3)
17.4.3 Additional Credit Possibilities
422(1)
References
423(2)
Symbol Index 425(6)
Abbreviations and Acronyms 431(2)
Index 433