Muutke küpsiste eelistusi

E-raamat: Effective Field Approach To Phase Transitions And Some Applications To Ferroelectrics (2nd Edition)

(Univ San Pablo-ceu De Madrid, Spain & Univ Autonoma De Madrid, Spain)
  • Formaat - PDF+DRM
  • Hind: 70,20 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book begins by introducing the effective field approach, the simplest approach to phase transitions. It provides an intuitive approximation to the physics of such diverse phenomena as liquid-vapor transitions, ferromagnetism, superconductivity, order-disorder in alloys, ferroelectricity, superfluidity and ferroelasticity. The connection between the effective field approach and Landau's theory is stressed.The main coverage is devoted to specific applications of the effective field concept to ferroelectric systems, both hydrogen bonded ferroelectrics, like those in the TGS family, and oxide ferroelectrics, like pure and mixed perovskites.
Preface vii
Preface to the Second Edition ix
Part 1 Mean Field Approach to Cooperative Phenomena 1(100)
1.1 An overview
3(8)
1.2 Liquid—vapor transitions
11(10)
1.3 Ferromagnetic transitions
21(10)
1.4 Superconductive transitions
31(6)
1.5 Order—disorder transitions in alloys
37(8)
1.6 Ferroelectric transitions
45(8)
1.7 Superfluid transitions
53(8)
1.8 Ferroelastic transitions
61(6)
1.9 Landau theory and effective field approach. Role of fluctuations
67(14)
1.10 Equation of state and the scaling function
81(10)
Appendix: Effective field approach to superconductors
91(10)
Part 2 Some Applications to Ferroelectrics: 1970-1991 101(88)
2.1 Behavior at T approximately equal to Tc of pure ferroelectric systems with second order phase transition
103(16)
2.2 Effects of dipolar impurities in small amounts
119(10)
2.3 Mixed ferro-antiferroelectric systems and other mixed ferroelectric systems
129(12)
2.3.1 Comment on "Ferroelectricity in zinc cadmium telluride"
137(4)
2.4 Relaxation phenomena near Tc
141(6)
2.5 Polarization reversal in ferroelectric systems
147(8)
2.6 Polarization switching by domain wall motion
155(8)
2.7 Switching current pulse shape
163(6)
2.8 Elementary excitations in ferroelectrics: Dipole waves
169(10)
2.9 Low-temperature behavior of ferroelectrics
179(4)
2.10 Logarithmic corrections
183(6)
Part 3 Some Applications to Ferroelectrics: 1991-1997 189(146)
3.1 Pressure dependence of the free energy expansion coefficients in PbTiO3 and BaTiO3, and tricritical point behavior
191(6)
3.2 Ultrasonic study of the ferroelectric phase transition in RbD2PO4
197(10)
3.3 New technique for investigating ferroelectric phase transitions: The photoacoustic effect
207(8)
3.4 Tricritical point behavior and quadrupole interactions in ferroelectrics
215(6)
3.5 Frequency and temperature dependence of sound velocity in TGS near Tc
221(8)
3.6 Dipolar and higher order interactions in ferroelectric TSCC
229(8)
3.7 Thermal hysteresis and quadrupole interactions in ferroelectric transitions
237(6)
3.8 Specific heat and quadrupole interactions in uniaxial ferroelectrics
243(6)
3.9 Field-dependent temperature shift of the dielectric losses peak in TGS
249(6)
3.10 Discontinuity and quasitricritical behavior near Tc in ferroelectric triglycine selenate
255(10)
3.11 Scaling equation of state for ferroelectric triglycine selenate at T almost equal to Tc
265(8)
3.12 Composition dependence of the ferroelectric—paraelectric transition in the mixed system PbZr1-χTiχO3
273(10)
3.13 Observations of two ferroelectric response times in TGSe at T less than or equal to Tc
283(6)
3.14 Equation of state for pressure and temperature induced transition in ferroelectric telluric acid ammonium phosphate
289(10)
3.15 Neutron diffraction investigation of the FRL-FRH transition in Nb-doped PbZr1-χTiχO3 with χ = 0.035
299(6)
3.16 O3 tilt and Pb/(Zr/Ti) displacement order parameters in Zr-rich PbZr1,TiχxO3 from 20 to 500K
305(14)
3.17 Dielectric characterization of the phase transitions in Pb1-y/2(Zr1-χTiχ)1-yNbyO3(0.03 less than or equal to χ less than or equal to 0.04, 0.025 less than or equal to y less than or equal to 0.05)
319(16)
Part 4 Some Applications to Ferrolectrics: 1998-2005 335(116)
4.1 Scaling and metastable behavior in uniaxial ferroelectrics
337(14)
4.2 Energy conversion with Zr-rich lead Zirconate/Titanate ceramics
351(6)
4.3 Microscopic characterization of low-field switching in ferroelectric TGS
357(10)
4.4 Brillouin scattering studies of ferroelectric triglycine selenate sound velocity versus uniaxial pressure at T ~ To
367(10)
4.5 Piezoelectric resonance investigation of Zr-rich PZT at room temperature
377(8)
4.6 Transition temperature dependence in perovskite ceramics as a function of grain size
385(4)
4.7 A monoclinic ferroelectric phase in the Pb(Zri-χTiχ)O3 solid solution
389(8)
4.8 Tetragonal-to-monoclinic phase transition in ferroelectric perovskite: The structure of PbZr0.52Ti0.48O3
397(22)
4.9 Evolution of the ferroelectric transition character of partially deuterated triglycine selenate
419(8)
4.10 Composition dependence of transition temperature in mixed ferroelectric—ferroelectric systems
427(8)
4.11 Temperature dependence of mode Griineisen parameters in ferroelectric perovskites at T approximately equal to Tc
435(4)
4.12 Quantum tunneling versus zero point energy in double-well potential model for ferroelectric phse transitions
439(12)
Index 451