Preface |
|
vii | |
Notation and Conventions |
|
xi | |
|
|
1 | (6) |
|
2 The "Folk Theorem" in Nuclear Physics |
|
|
7 | (46) |
|
|
7 | (2) |
|
2.2 How nuclear effective field theory fares |
|
|
9 | (5) |
|
2.2.1 Nuclear proof: "Chiral filter" mechanism |
|
|
9 | (5) |
|
2.2.2 Soft theorems and the "quenched gA problem" in nuclei |
|
|
14 | (1) |
|
|
14 | (5) |
|
|
19 | (4) |
|
|
19 | (2) |
|
|
21 | (1) |
|
2.4.3 Spontaneous breaking of symmetries |
|
|
22 | (1) |
|
2.5 Nonlinear realization of chiral symmetry and its topology |
|
|
23 | (6) |
|
2.5.1 From linear sigma model to nonlinear sigma-model and vice-versa |
|
|
23 | (4) |
|
2.5.2 Topology in the nonlinear realization of chiral symmetry |
|
|
27 | (2) |
|
2.6 Chiral effective field theory of hadrons |
|
|
29 | (15) |
|
2.6.1 Nambu-Goldstone bosons: Pseudoscalar mesons |
|
|
30 | (2) |
|
|
32 | (7) |
|
|
39 | (2) |
|
2.6.4 Scalar meson: Dilaton |
|
|
41 | (3) |
|
|
44 | (9) |
|
|
45 | (4) |
|
2.7.2 Skyrmions on crystal for nuclear matter |
|
|
49 | (4) |
|
3 Hadron-Quark Continuity |
|
|
53 | (30) |
|
|
53 | (1) |
|
3.2 Chiral bag model for Cheshire Cat phenomena |
|
|
54 | (14) |
|
3.2.1 Cheshire Cat as a gauge artifact |
|
|
54 | (4) |
|
|
58 | (4) |
|
|
62 | (2) |
|
|
64 | (1) |
|
3.2.5 Cheshire Cat and color-flavor locking |
|
|
65 | (3) |
|
3.3 The Cheshire Cat facing Nature |
|
|
68 | (15) |
|
3.3.1 Three-flavor chiral bag Lagrangian |
|
|
68 | (2) |
|
3.3.2 Flavor-singlet axial charge a0 = g0A |
|
|
70 | (8) |
|
3.3.3 Nucleon form factors |
|
|
78 | (3) |
|
|
81 | (2) |
|
4 Effective Field Theories for Nuclear Interactions |
|
|
83 | (46) |
|
4.1 Web of effective field theories |
|
|
83 | (2) |
|
4.2 EFT strategy in dense baryonic matter |
|
|
85 | (12) |
|
4.2.1 Renormalization decimations |
|
|
86 | (2) |
|
4.2.2 Fermi-liquid fixed point |
|
|
88 | (1) |
|
|
89 | (4) |
|
4.2.4 Going beyond the VlowkRG? |
|
|
93 | (4) |
|
4.3 Chiral perturbation theory for nuclear matter |
|
|
97 | (3) |
|
4.4 Fermi-liquid fixed-point theory |
|
|
100 | (17) |
|
4.4.1 Relativistic mean field theory as a single-decimation fixed-point theory |
|
|
100 | (13) |
|
4.4.2 Wilsonian renormalization and Vlowk |
|
|
113 | (4) |
|
4.5 Energy density functional |
|
|
117 | (12) |
|
4.5.1 Generating functional and Hohenberg-Kohn theorem |
|
|
117 | (6) |
|
4.5.2 Variety of energy density functionals for applications |
|
|
123 | (2) |
|
4.5.3 Energy density functional from bsHLS theory |
|
|
125 | (4) |
|
5 Hidden Symmetries in Dense Matter |
|
|
129 | (20) |
|
5.1 Symmetries hidden in QCD |
|
|
129 | (1) |
|
5.2 Hidden scale symmetry |
|
|
130 | (8) |
|
|
132 | (3) |
|
5.2.2 Nambu-Jona-Lasinio model |
|
|
135 | (2) |
|
5.2.3 Dilaton-limit fixed point: Emerging scale symmetry |
|
|
137 | (1) |
|
5.3 Hidden local symmetry |
|
|
138 | (7) |
|
5.3.1 Redundancy in the chiral field |
|
|
138 | (2) |
|
5.3.2 Hidden-local-symmetrizing scale symmetry |
|
|
140 | (1) |
|
5.3.3 Power of hidden local symmetry |
|
|
140 | (2) |
|
5.3.4 Vector manifestation: Emerging local symmetry |
|
|
142 | (3) |
|
|
145 | (4) |
|
|
149 | (40) |
|
6.1 f0(500) and scalar conundrum in nuclear physics |
|
|
149 | (5) |
|
6.1.1 Scalar σ as a Nambu-Goldstone boson |
|
|
150 | (4) |
|
6.2 Scale-chiral Lagrangian |
|
|
154 | (9) |
|
6.2.1 ΧPTσ at the leading order |
|
|
155 | (4) |
|
6.2.2 ΧPTσ at the-next-to-leading order |
|
|
159 | (4) |
|
6.3 Scale-invariant hidden local symmetry |
|
|
163 | (2) |
|
6.4 Scale-invariant hidden local symmetry with baryon octet |
|
|
165 | (4) |
|
6.5 Dilatonic chiral effective theory for non-abelian gauge theory in the Veneziano limit |
|
|
169 | (9) |
|
6.5.1 Leading-order scale symmetry (LOSS) |
|
|
172 | (1) |
|
6.5.2 Going beyond the LOSS |
|
|
173 | (5) |
|
6.6 Applications in nuclear systems |
|
|
178 | (11) |
|
6.6.1 Nuclear ΧPTσ: Landau Fermi liquid from scalechiral symmetry |
|
|
179 | (6) |
|
6.6.2 Matching to QCD and vector manifestation |
|
|
185 | (3) |
|
6.6.3 Signal for β ≠ 0 in nuclear medium? |
|
|
188 | (1) |
|
7 From Skyrmions to Dense Matter |
|
|
189 | (42) |
|
7.1 Trading-in quarks/gluons for topology in effective field theory |
|
|
189 | (3) |
|
|
192 | (2) |
|
|
193 | (1) |
|
7.3 Dense baryonic matter |
|
|
194 | (28) |
|
|
195 | (8) |
|
7.3.2 Pion decay constant in the half-skyrmion phase |
|
|
203 | (2) |
|
7.3.3 The cusp in the nuclear symmetry energy |
|
|
205 | (2) |
|
7.3.4 Effects of massive mesons on skyrmion matter |
|
|
207 | (1) |
|
7.3.5 The effect of the vector mesons ρ and ω |
|
|
208 | (5) |
|
|
213 | (1) |
|
7.3.7 Scale symmetry and homogeneous Wess-Zumino term in dense matter |
|
|
214 | (3) |
|
7.3.8 Infinite tower of vector mesons in holographic QCD |
|
|
217 | (5) |
|
|
222 | (6) |
|
7.4.1 Hidden BPS structure |
|
|
222 | (2) |
|
7.4.2 BPS skyrmion for medium-heavy nuclei |
|
|
224 | (4) |
|
7.5 Cheshire Cat and duality |
|
|
228 | (3) |
|
8 Compressed Baryonic Matter |
|
|
231 | (42) |
|
8.1 What's not in the standard nuclear effective field theory approach |
|
|
233 | (1) |
|
8.2 Scale-invariant HLS Lagrangian in medium |
|
|
234 | (22) |
|
8.2.1 Intrinsic density dependence |
|
|
235 | (3) |
|
8.2.2 Two density regimes delineated by topology change |
|
|
238 | (7) |
|
8.2.3 Nuclear tensor forces |
|
|
245 | (7) |
|
8.2.4 The cusp in Esym from the tensor force |
|
|
252 | (4) |
|
8.3 Renormalization group with Vlowk |
|
|
256 | (5) |
|
8.3.1 Single-decimation RG |
|
|
256 | (1) |
|
8.3.2 Double-decimation RG |
|
|
257 | (4) |
|
8.4 Applications to baryonic matter |
|
|
261 | (12) |
|
8.4.1 "Bare" parameters of bsHLS |
|
|
261 | (2) |
|
8.4.2 bsHLS in the mean field: Parity doubling and DLFP |
|
|
263 | (7) |
|
8.4.3 Equation of state in VlowkRG |
|
|
270 | (3) |
|
|
273 | (30) |
|
|
275 | (2) |
|
9.2 Prediction of star properties |
|
|
277 | (19) |
|
|
277 | (1) |
|
9.2.2 Tolman-Oppenheimer-Volkoff (TOV) equations |
|
|
278 | (1) |
|
|
278 | (1) |
|
9.2.4 "Constraints" at n0 |
|
|
279 | (2) |
|
|
281 | (11) |
|
9.2.6 Pseudo-conformal model |
|
|
292 | (4) |
|
9.3 Hadron-quark continuity in stars: Cheshire Cat strikes again |
|
|
296 | (7) |
|
9.3.1 Duality: Half-skyrmion phase and quarkyonic phase |
|
|
298 | (2) |
|
9.3.2 Duality: Superqualiton and color-flavor locking |
|
|
300 | (3) |
|
|
303 | (26) |
|
10.1 "Strangeness problem" |
|
|
303 | (2) |
|
10.2 Kaon condensation vs. hyperons |
|
|
305 | (2) |
|
|
307 | (3) |
|
10.4 Kaons in skyrmion crystal |
|
|
310 | (6) |
|
|
311 | (1) |
|
10.4.2 Fluctuating kaons in the skyrmion matter |
|
|
312 | (1) |
|
|
313 | (1) |
|
10.4.4 Effective kaon mass |
|
|
314 | (1) |
|
10.4.5 Compact-star matter and kaon condensation |
|
|
315 | (1) |
|
10.5 Kaons in Fermi liquid |
|
|
316 | (10) |
|
|
319 | (3) |
|
10.5.2 Renormalization group |
|
|
322 | (1) |
|
|
323 | (2) |
|
10.5.4 Instability toward the condensation |
|
|
325 | (1) |
|
|
326 | (3) |
Epilogue |
|
329 | (10) |
Bibliography |
|
339 | (18) |
Index |
|
357 | |