Muutke küpsiste eelistusi

E-raamat: Effective Field Theories For Nuclei And Compact-star Matter: Chiral Nuclear Dynamics (Cnd-iii)

(Dsm-cea Saclay, France & Hanyang Univ, Korea), (Hangzhou Inst For Advanced Study, Ucas, China)
  • Formaat: 380 pages
  • Ilmumisaeg: 26-Oct-2018
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789813273337
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 111,15 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 380 pages
  • Ilmumisaeg: 26-Oct-2018
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789813273337
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Effective field theories have been widely used in nuclear physics. This volume is devoted to exploring the intricate structure of compact-star matter inaccessible directly from QCD. It is principally anchored on hidden symmetries and topology presumed to be encoded in QCD. It differs from standard effective field theory and energy density functional approaches in that it exploits renormalization-group flow in the complex "vacuum" sliding with density inferred from topology change identified as a manifestation of baryon-quark continuity in dense matter. It makes a variety of predictions that drastically differ from the conventional treatments that could be tested by upcoming terrestrial and astrophysical experiments. This monograph recounts how to go, in one unique field theoretic formalism in terms of hadronic degrees of freedom, from finite nuclei to dense compact-star matter that could be explored in RIB-type machines in nuclear physics as well as in LIGO-type gravity waves in astrophysics.

Preface vii
Notation and Conventions xi
1 Introduction
1(6)
2 The "Folk Theorem" in Nuclear Physics
7(46)
2.1 Foreword
7(2)
2.2 How nuclear effective field theory fares
9(5)
2.2.1 Nuclear proof: "Chiral filter" mechanism
9(5)
2.2.2 Soft theorems and the "quenched gA problem" in nuclei
14(1)
2.3 Essentials of QCD
14(5)
2.4 "QCDLite"
19(4)
2.4.1 Chiral symmetry
19(2)
2.4.2 Scale symmetry
21(1)
2.4.3 Spontaneous breaking of symmetries
22(1)
2.5 Nonlinear realization of chiral symmetry and its topology
23(6)
2.5.1 From linear sigma model to nonlinear sigma-model and vice-versa
23(4)
2.5.2 Topology in the nonlinear realization of chiral symmetry
27(2)
2.6 Chiral effective field theory of hadrons
29(15)
2.6.1 Nambu-Goldstone bosons: Pseudoscalar mesons
30(2)
2.6.2 Vector mesons
32(7)
2.6.3 Baryons in HLS
39(2)
2.6.4 Scalar meson: Dilaton
41(3)
2.7 Topological solitons
44(9)
2.7.1 The Skyrme model
45(4)
2.7.2 Skyrmions on crystal for nuclear matter
49(4)
3 Hadron-Quark Continuity
53(30)
3.1 Cheshire Cat
53(1)
3.2 Chiral bag model for Cheshire Cat phenomena
54(14)
3.2.1 Cheshire Cat as a gauge artifact
54(4)
3.2.2 Baryon charge
58(4)
3.2.3 Wess-Zumino term
62(2)
3.2.4 Color anomaly
64(1)
3.2.5 Cheshire Cat and color-flavor locking
65(3)
3.3 The Cheshire Cat facing Nature
68(15)
3.3.1 Three-flavor chiral bag Lagrangian
68(2)
3.3.2 Flavor-singlet axial charge a0 = g0A
70(8)
3.3.3 Nucleon form factors
78(3)
3.3.4 Compact stars
81(2)
4 Effective Field Theories for Nuclear Interactions
83(46)
4.1 Web of effective field theories
83(2)
4.2 EFT strategy in dense baryonic matter
85(12)
4.2.1 Renormalization decimations
86(2)
4.2.2 Fermi-liquid fixed point
88(1)
4.2.3 VlowkRG approach
89(4)
4.2.4 Going beyond the VlowkRG?
93(4)
4.3 Chiral perturbation theory for nuclear matter
97(3)
4.4 Fermi-liquid fixed-point theory
100(17)
4.4.1 Relativistic mean field theory as a single-decimation fixed-point theory
100(13)
4.4.2 Wilsonian renormalization and Vlowk
113(4)
4.5 Energy density functional
117(12)
4.5.1 Generating functional and Hohenberg-Kohn theorem
117(6)
4.5.2 Variety of energy density functionals for applications
123(2)
4.5.3 Energy density functional from bsHLS theory
125(4)
5 Hidden Symmetries in Dense Matter
129(20)
5.1 Symmetries hidden in QCD
129(1)
5.2 Hidden scale symmetry
130(8)
5.2.1 Linear sigma model
132(3)
5.2.2 Nambu-Jona-Lasinio model
135(2)
5.2.3 Dilaton-limit fixed point: Emerging scale symmetry
137(1)
5.3 Hidden local symmetry
138(7)
5.3.1 Redundancy in the chiral field
138(2)
5.3.2 Hidden-local-symmetrizing scale symmetry
140(1)
5.3.3 Power of hidden local symmetry
140(2)
5.3.4 Vector manifestation: Emerging local symmetry
142(3)
5.4 Mended symmetries
145(4)
6 Scale-Chiral Symmetry
149(40)
6.1 f0(500) and scalar conundrum in nuclear physics
149(5)
6.1.1 Scalar σ as a Nambu-Goldstone boson
150(4)
6.2 Scale-chiral Lagrangian
154(9)
6.2.1 ΧPTσ at the leading order
155(4)
6.2.2 ΧPTσ at the-next-to-leading order
159(4)
6.3 Scale-invariant hidden local symmetry
163(2)
6.4 Scale-invariant hidden local symmetry with baryon octet
165(4)
6.5 Dilatonic chiral effective theory for non-abelian gauge theory in the Veneziano limit
169(9)
6.5.1 Leading-order scale symmetry (LOSS)
172(1)
6.5.2 Going beyond the LOSS
173(5)
6.6 Applications in nuclear systems
178(11)
6.6.1 Nuclear ΧPTσ: Landau Fermi liquid from scalechiral symmetry
179(6)
6.6.2 Matching to QCD and vector manifestation
185(3)
6.6.3 Signal for β ≠ 0 in nuclear medium?
188(1)
7 From Skyrmions to Dense Matter
189(42)
7.1 Trading-in quarks/gluons for topology in effective field theory
189(3)
7.2 Skyrmions in brief
192(2)
7.2.1 Baryons
193(1)
7.3 Dense baryonic matter
194(28)
7.3.1 Half-skyrmions
195(8)
7.3.2 Pion decay constant in the half-skyrmion phase
203(2)
7.3.3 The cusp in the nuclear symmetry energy
205(2)
7.3.4 Effects of massive mesons on skyrmion matter
207(1)
7.3.5 The effect of the vector mesons ρ and ω
208(5)
7.3.6 HLSreduced
213(1)
7.3.7 Scale symmetry and homogeneous Wess-Zumino term in dense matter
214(3)
7.3.8 Infinite tower of vector mesons in holographic QCD
217(5)
7.4 The BPS skyrmions
222(6)
7.4.1 Hidden BPS structure
222(2)
7.4.2 BPS skyrmion for medium-heavy nuclei
224(4)
7.5 Cheshire Cat and duality
228(3)
8 Compressed Baryonic Matter
231(42)
8.1 What's not in the standard nuclear effective field theory approach
233(1)
8.2 Scale-invariant HLS Lagrangian in medium
234(22)
8.2.1 Intrinsic density dependence
235(3)
8.2.2 Two density regimes delineated by topology change
238(7)
8.2.3 Nuclear tensor forces
245(7)
8.2.4 The cusp in Esym from the tensor force
252(4)
8.3 Renormalization group with Vlowk
256(5)
8.3.1 Single-decimation RG
256(1)
8.3.2 Double-decimation RG
257(4)
8.4 Applications to baryonic matter
261(12)
8.4.1 "Bare" parameters of bsHLS
261(2)
8.4.2 bsHLS in the mean field: Parity doubling and DLFP
263(7)
8.4.3 Equation of state in VlowkRG
270(3)
9 Compact Stars
273(30)
9.1 Basic issues
275(2)
9.2 Prediction of star properties
277(19)
9.2.1 New results
277(1)
9.2.2 Tolman-Oppenheimer-Volkoff (TOV) equations
278(1)
9.2.3 Equation of state
278(1)
9.2.4 "Constraints" at n0
279(2)
9.2.5 Massive stars
281(11)
9.2.6 Pseudo-conformal model
292(4)
9.3 Hadron-quark continuity in stars: Cheshire Cat strikes again
296(7)
9.3.1 Duality: Half-skyrmion phase and quarkyonic phase
298(2)
9.3.2 Duality: Superqualiton and color-flavor locking
300(3)
10 Strangeness in Stars
303(26)
10.1 "Strangeness problem"
303(2)
10.2 Kaon condensation vs. hyperons
305(2)
10.3 Hyperon problem
307(3)
10.4 Kaons in skyrmion crystal
310(6)
10.4.1 The Lagrangian
311(1)
10.4.2 Fluctuating kaons in the skyrmion matter
312(1)
10.4.3 Skyrmion crystal
313(1)
10.4.4 Effective kaon mass
314(1)
10.4.5 Compact-star matter and kaon condensation
315(1)
10.5 Kaons in Fermi liquid
316(10)
10.5.1 Scaling
319(3)
10.5.2 Renormalization group
322(1)
10.5.3 Flow analysis
323(2)
10.5.4 Instability toward the condensation
325(1)
10.6 Remarks
326(3)
Epilogue 329(10)
Bibliography 339(18)
Index 357