Muutke küpsiste eelistusi

E-raamat: Elastic Scattering of Electromagnetic Radiation: Analytic Solutions in Diverse Backgrounds

(Krishna Institute of Engineering & Technology, India)
  • Formaat: 260 pages
  • Ilmumisaeg: 29-Jan-2018
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781498748582
  • Formaat - PDF+DRM
  • Hind: 64,99 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 260 pages
  • Ilmumisaeg: 29-Jan-2018
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781498748582

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The technique of elastic scattering of electromagnetic radiation has been used as a diagnostic tool in various disciplines of science,engineering,medicine and agriculture.The investigations relating to above problems may be divided in three categories:(i)Scattering by a single particle,(ii)Scattering by a tenuous system of uncorrelated scatterers and (iii)Scattering by a concentrated dispersion of scatterers.In the proposed book,the primary effort is to examine the analytic solutions of the scattering problems of types (i) and (ii) in diverse backgrounds.For the completeness of the book,analytic solutions in scattering situations of type (iii) are also covered in reasonable details.

Arvustused

"Sharma does an excellent job of focusing on analytical solutions of elastic scattering problems, where the emphasis is to find approximate solutions."

--Christian Brosseau, OSA Fellow and professor of physics, Université de Bretagne Occidentale, Brest, France

Preface xi
List of Figures
xiii
List of Tables
xv
Symbols xvii
1 Introduction
1(24)
1.1 Objective and scope of the book
1(4)
1.2 Electromagnetic wave propagation in homogeneous media
5(7)
1.2.1 Dielectric medium
5(4)
1.2.2 Conducting medium
9(1)
1.2.3 Optically active medium
10(1)
1.2.4 Anisotropic medium
11(1)
1.3 Classification of electromagnetic scattering problems
12(3)
1.3.1 Wave, particle and ray descriptions
12(1)
1.3.2 Elastic, quasi-elastic and inelastic scattering
13(1)
1.3.3 Static and dynamic scattering
13(1)
1.3.4 Single and multiple scattering
13(1)
1.3.5 Independent and dependent scattering
14(1)
1.3.6 Rayleigh scattering
14(1)
1.3.7 Mie scattering
14(1)
1.4 Single particle scalar scattering
15(5)
1.4.1 Basic definitions
15(3)
1.4.2 Scalar wave scattering versus potential scattering
18(2)
1.4.3 Applicability of the scalar approximation
20(1)
1.5 Vector description
20(2)
1.5.1 Stokes parameters
20(1)
1.5.2 Scattering matrix
21(1)
1.6 Acoustic wave scattering
22(3)
2 Single particle scattering
25(40)
2.1 Analytic solutions
25(2)
2.2 Rigorous analytic solutions
27(32)
2.2.1 Homogeneous sphere: Mie scattering
28(8)
2.2.2 Mie theory in Gegenbauer polynomials
36(1)
2.2.3 Computation of Mie coefficients
37(1)
2.2.4 Basic structures in Mie scattering
38(9)
2.2.5 Magnetic spheres
47(1)
2.2.6 Spheres in an absorbing host medium
48(4)
2.2.7 Charged spheres
52(1)
2.2.8 Chiral spheres
53(1)
2.2.9 Layered spheres
54(5)
2.2.10 Debye series
59(1)
2.3 Resonances of the Mie coefficients
59(2)
2.4 Other shapes
61(2)
2.5 Integral equation method
63(2)
3 Approximate formulas
65(76)
3.1 The need for approximate formulas
66(1)
3.2 Efficiency factors of small particles
67(12)
3.2.1 Rayleigh approximation
68(4)
3.2.2 The Tien--Doornink--Rafferty approximation
72(1)
3.2.3 The first-term approximation
72(1)
3.2.4 Wiscombe approximation
72(1)
3.2.5 Penndorf approximation
73(1)
3.2.6 Caldas--Semiao approximation
74(1)
3.2.7 Numerical comparisons
75(1)
3.2.8 Videen and Bickel approximation
76(3)
3.3 Angular scattering by small particles: Parameterization
79(4)
3.3.1 Five-parameter phase function
79(2)
3.3.2 Six-parameter phase function
81(1)
3.3.3 Series expansion
82(1)
3.4 Angular scattering by small particles: Dependence on particle characteristics
83(6)
3.4.1 Rayleigh phase function
84(1)
3.4.2 Phase function for small spherical particles
84(2)
3.4.3 Caldas--Semiao approximation
86(3)
3.5 Rayleigh--Gans approximation
89(10)
3.5.1 Homogeneous spheres: Visible and ultraviolet range
91(4)
3.5.2 Homogeneous spheres: X-ray energies
95(1)
3.5.3 Nonspherical particles
96(3)
3.6 The eikonal approximation
99(13)
3.6.1 Homogeneous spheres
101(2)
3.6.2 Corrections to the eikonal approximation
103(2)
3.6.3 Generalized eikonal approximation
105(2)
3.6.4 Infinitely long cylinders: Normal incidence
107(2)
3.6.5 Coated spheres
109(1)
3.6.6 Spheroids
110(1)
3.6.7 Backscattering in the eikonal approximation
111(1)
3.7 Anomalous diffraction approximation
112(8)
3.7.1 Homogeneous spheres
113(1)
3.7.2 Edge effects
113(1)
3.7.3 Relationship with the Ramsauer approach
114(1)
3.7.4 X-ray scattering in the ADA
115(1)
3.7.5 Long cylinders: Oblique incidence
116(1)
3.7.6 Long elliptic cylinders
117(1)
3.7.7 Spheroids
117(1)
3.7.8 Ellipsoids
118(1)
3.7.9 Layered particles
119(1)
3.7.10 Other shapes
120(1)
3.8 WKB approximation
120(2)
3.9 Perelman approximation
122(4)
3.9.1 Homogeneous spheres
122(3)
3.9.2 The scalar Perelman approximation
125(1)
3.9.3 Infinitely long cylinders
125(1)
3.10 Hart and Montroll approximation
126(3)
3.10.1 Homogeneous spheres
126(2)
3.10.2 Infinitely long cylinders: Normal incidence
128(1)
3.11 Evans and Fournier approximation
129(1)
3.12 Large particle approximations
130(5)
3.12.1 Empirical formulas
130(1)
3.12.2 Fraunhofer diffraction approximation
131(1)
3.12.3 Geometrical optics approximation
131(1)
3.12.4 Bohren and Nevitt approximation
132(2)
3.12.5 Nussenzweig and Wiscombe approximation
134(1)
3.13 Other large size parameter approximations
135(2)
3.14 Composite particles
137(4)
3.14.1 Effective medium theories
137(2)
3.14.2 Effective Refractive Index Method
139(2)
4 Scattering by an assembly of particles
141(56)
4.1 Single scattering by N independent particles
143(2)
4.2 Multiple scattering
145(1)
4.3 Diffusion approximation
146(1)
4.4 Radiative transfer equation
146(2)
4.5 Phase function
148(19)
4.5.1 The Henyey--Greenstein phase function (HGPF)
149(3)
4.5.2 Improvements over the HGPF
152(2)
4.5.3 Sum of two phase functions
154(2)
4.5.4 Caldas--Semiao approximation
156(1)
4.5.5 Biomedical specific phase functions
157(3)
4.5.6 Astrophysics specific phase functions
160(3)
4.5.7 Marine environment specific phase functions
163(2)
4.5.8 Single scattering properties of snow
165(2)
4.6 Some distribution specific analytic phase functions
167(3)
4.6.1 Rayleigh phase function for modified gamma distribution
167(2)
4.6.2 Junge size distribution
169(1)
4.7 Extinction by randomly oriented monodisperse particles
170(7)
4.7.1 Cylinders
170(1)
4.7.2 Spheroids and ellipsoids
171(2)
4.7.3 Arbitrary shapes
173(4)
4.8 Extinction and scattering efficiencies by a polydispersion of spheres
177(14)
4.8.1 Modified gamma size distribution in the ADA
177(1)
4.8.2 Modified gamma distribution for coal, fly ash and soot
178(2)
4.8.3 Power law distribution
180(3)
4.8.4 Power law distribution: Empirical formulas for interstellar extinction
183(8)
4.9 Scattering by nonspherical polydispersions
191(1)
4.10 Effective phase function
191(3)
4.11 Relation between light scattering reflectance and the phase function
194(3)
Appendix 197(4)
Bibliography 201(38)
Index 239
Subodh Kumar Sharma obtained his Ph. D. in 1977 from Calcutta University, India. He has done teaching and research at the Birla Institute of Technology and Science, Pilani, India, the Saha Institute of Nuclear Physics, Kolkata, India, the Institute of Wetland Management and Ecological Design, Kolkata, India, the S N Bose National Centre for Basic Sciences, Kolkata, India, the University College, Cardiff, Wales and the Imperial College, London. Currently he is associated with S N Bose National Centre as an Emeritus Professor. The main direction of his research has been the scattering of electromagnetic radiation (mainly optical) from single as well as ensemble of particles from the point of view of characterizing them. He has also worked in scattering problems in high energy physics and acoustics. He is author and co-author of about 75 papers in peer-reviewed journals, 3 book chapters and a book entitled Light Scattering by Optically Soft Particles: Theory and applications. The book was co-authored with D. J. Somerford of University of Wales College of Cardiff.